Proceedings of ICAD2000

First International Conference on Axiomatic Design — Cambridge, MA — June 21-23, 2000

ICADO22

IMPLEMENTING AXIOMATIC DESIGN IN THE SYSTEMS ENGINEERING
PROCESS: AN AXIOMATIC DESIGN CAPABILITY MATURITY MODEL

Jason D. Hintersteiner
hintersj@svg.com
SVG Lithography Systems, Inc.
901 Ethan Allen Highway
Ridgefield, CT 06877

ABSTRACT

Since its inception, Axiomatic Design has been applied to a
wide variety of both engineering and non-engineering problems
in numerous disciplines. Recent theoretical developments have
further expanded its ability to represent complex engineering
systems. The scope of Axiomatic Design usage, however, has
traditionally been limited to particular applications or projects.
Axiomatic Design, however, can be most useful as a design
management tool applied across an engineering organization’s
Systems Engineering processes. The benefits of this approach
would be both in technical areas related to the quality of the
organization’s designs as well as financial benefits in the
effectiveness of Axiomatic Design in decreasing the
organization’s time to market and ultimately increasing customer
satisfaction with more functional and more reliable products.

The success of such an implementation effort requires not
only integrating Axiomatic Design methodology into all aspects
of engineering practice, but also measuring and tracking the
organization’s capability and effectiveness in Axiomatic Design,
in order to continuously refine and improve the integration
efforts. To this end, an Axiomatic Design Capability Maturity
Model has been developed, in order to provide a roadmap for
implementation as well as coherent metrics that can be applied to
determine which activities are successful and which activities may
require improvement.

Keywords: Axiomatic Design, Systems Engineering, Design
Management, Capability Maturity Model

1 INTRODUCTION

Anyone trying to understand Systems Integration who isn’t confused is
Just not thinking clearly.”
-- Joseph H. Mize (1999)

While the fundamental concepts first put forth by Suh
[1990, 2000] have been around for over 20 years, Axiomatic
Design as a designh methodology and philosophy has traditionally
not been widely accepted outside academia. This trend,
however, is not due to the methodology’s lack of applicability to
real-world engineering problems — indeed, numerous case studies

Copyright 2000 by the Institute for Axiomatic Design

Richard C. Zimmerman
zimmermant(@svg,com
SVG Lithography Systems, Inc.
901 Ethan Allen Highway
Ridgefield, CT 06877

by several researchers have been made that apply Axiomatic
Design to problems in disciplines including mechanics,
manufacturing, computer networking, software, optics, and
biology. Nor is this trend due to a lack of proven business
benefit — many analyses done by companies have demonstrated
savings in time, money, and customer satisfaction. One example
is a redesign of a flexure for a prealigner system at SVG
Lithography Systems, Inc., where the lead time, part count, and
manufacturing time were all significantly reduced while reliability
was considerably increased. [DelPuerto and Garcia, 2000] An
even more notable example is a case where an engineer from
Standard-Thomson Corporation, while taking an evening class in
Axiomatic Design, redesigned his company’s factory floor for his
class project. This new design ultimately saved the company
over $2.4 million, and the engineer was promoted to Vice
President. [McDonald, 1998]. The trend also does not seem to
stem from a lack of interest or awareness of Axiomatic Design —
the conference forum of this paper and the formation of the
new Council on Axiomatic Design Research and Education
(CADRE) reflects the growing interest in Axiomatic Design and
its applications in both industry and academia.

Why, therefore, has Axiomatic Design met with such
resistance outside academia?

One of the greatest obstacles is that technology transfer
from academia to industry for smwst engineering design
methodologies, including Axiomatic Design, has been difficult.
Most corporately-sponsored research is directed at solving
particular problems — hence, the end result is what tends to be
transferred, without the methodology used to achieve that result.
Furthermore, new engineering graduates rarely enter corporate
positions immediately where they have the ability to influence
the company’s design methodology. [Fredriksson ez al, 1994]

Another traditional obstacle has been the difficulty in
establishing guidelines consistent with the axioms, theorems, and
corollaries of Axiomatic Design for determining FRs, DPs, Cs,
and design matrices for complex systems. Work by Hintersteiner
[1999, 2000], Suh [2000], Tate [1999] and others has mitigated
this to some extent by the establishment of system templates and
guidelines for system design. It is true, though, that not all of
the issues related to complex system representation have been
worked out, proving this area of Axiomatic Design is still a
fertile area for research and development.

The most difficult and challenging obstacle, however, is that
Axiomatic Design has not been readily extendable from the
individual engineer working on his/her particular design problem
to an organization-wide methodology capable of managing and
controlling the design of an entire system. ‘Two general
approaches to implementing Axiomatic Design in an engineering
organization have been taken in the past — either a top-down
decree from management, or a bottom-up diffusion of
knowledge from trained engineers. Both approaches have their
advantages and risks. [Nordlund ef a/, 1996] The problem with
both of these approaches, however, is that few companies have
had the level of in-house expertise, management support, and
long-term planning necessary for success. Many difficult
questions emerge and must be addressed early-on in such efforts,
including:

e How can the Axiomatic Design process be structured to
maintain both performance and consistency between
designers?

e Which people in the organization need to be trained in
Axiomatic Design, and what are the best methods for
supervising and evaluating their work?

e How can the benefits to the organization achieved by using
Axiomatic Design be measured and evaluated?

The goal of this paper, therefore, is to address these
questions by understanding the different levels of Axiomatic
Design maturity that an organization must go through in order to
successfully implement Axiomatic Design. This is done by
means of an Axiomatic Design Capability Maturity Model (AD
CMM), which can be used to guide the development of both the
Systems Engineering practices needed as well as the metrics that
can be used to determine the organization’s technical capability
and business effectiveness in implementing Axiomatic Design.

This paper is organized as follows. Section 2 provides a
brief overview of Axiomatic Design and the system architecture
template that has been developed to apply Axiomatic Design to
complex systems. Section 3 discusses the Axiomatic Design
Capability Maturity Model. Section 4 highlights examples of the
AD Systems Engineering practices and AD implementation
metrics that are based on the AD CMM. Section 5 summarizes
the discussion and provides a basis for future work.

2 AXIOMATIC DESIGN AND THE SYSTEM
ARCHITECTURE TEMPLATE

“We must learn how to study a whole as a whole, not merely through an
analysis of each of its constituents.”
— Mary Parker Follett (1927)

When a system has a sufficiently large number of functions
and many levels of detail, the design process is distributed
among several engineering design teams, each of which is
responsible for a subset of the design tasks. A systez may be
distinguished from a component by the fact that a system consists
not only of process functionality but also requires functionality
for controlling and supporting the processes.

Typically, each design team optimizes its design based on its
assigned tasks and constraints, without necessarily accounting for

Copyright 2000 by the Institute for Axiomatic Design

the many design interrelationships that exist between the
subsystems. It is disturbingly easy, therefore, for a team to be
unaware of “external” design decisions that can have a negative
impact on its design. Thus, when all of the separate designs are
assembled, it is quite common to discover that the overall system
does not function as intended. The real goal of the overall
design effort is to optimize the performance of the system,
which does not necessarily mean optimizing the performance of
each component.

Problems can be compounded when the statement of the
customer needs changes during the design effort. Because
companies consider it infeasible to restart the design process
from scratch, new and modified functional requirements and
constraints are incorporated into the existing design as the
changes occur. When trying to compensate for this, a change to
one portion of the design can negatively impact other portions
unintentionally. Moreover, one design team may not be aware of
changes to another group’ requirements, even though they are
significantly impacted. Therefore, it is extremely important to
have tools and methods to trace the impact of design decisions
on both local and system-wide levels. [Hintersteiner, 2000]

For example, consider the relationship between hardware
and software. Recent efforts in concurrent engineering have
sought to perform hardware and software design in parallel in
order to reduce overall development time. This cannot be done
effectively, however, unless the intended functional requirements
of both the hardware and the software and their
interrelationships are well-understood. Hardware engineering
and software engineering, however, are all-too-frequently treated
as separate disciplines, with independent groups of designers, in
product development. Because the design of the software
control logic depends on the nature of the hardware to be
controlled, software is typically developed after the hardware is
mostly, if not completely, defined. According to Leveson [1995],
this dependency leads to very short development times allocated
for software as well as the last-minute addition of functionality to
the software because of either hardware limitations or the
perception that it will be “easier” to implement certain tasks in
software. This philosophy often leads to undue software
complexity as well as unpredictable system behavior. While the
hardware design may be optimized, the quality of the overall
system suffers as seen in the user interface and in the non-
satisfaction of requirements that were identified late in the
design process.

These issues can be addressed by applying Axiomatic Design
to the design of complex systems. Using this approach,
designers generate a gysterz architecture that captures the
hierarchical structure and the interrelationships between the
functional requirements, design parameters, and constraints of
the system. Additionally, the design axioms provide a rational
means for evaluating the quality of proposed designs, make
choices among these alternatives more explicit, and guide
designers to consider solution alternatives at all levels of detail.
Thus, the quality of the design can be evaluated so that the
potential problems of a design can be detected and avoided
during an early stage of the design process.

10

2.1 AXIOMATIC DESIGN THEORY

The design process is defined as the set of activities by which
designers develop and/or select of a means (design parametets,
or DPs) to satisfy objectives (functional requirements, or FRs),
subject to constraints (Cs). Axiomatic Design provides a
framework for describing design objects which is consistent for
all types of design problems and at all levels of detail. Thus,
different designers, as well as observers to the design process,
can quickly understand the relationships between the desired
functions of an object and the means by which the functions are
achieved.

The main concepts of Axiomatic Design are (1) domains,
which separate the functional and physical parts of the design;
(2) hierarchies, which categorize the progress of a design in the
functional and physical domains from a systemic level to more
detailed levels; (3) zigzagging, which indicates that decisions made
at one level of the hierarchy affect the problem statement at
lower levels; and (4) design axioms, which dictate that the
independence of the functional requirements must be
maintained and that the information content (i.e., cost,
complexity, etc.) must be minimized as criteria for high-quality
designs. More thorough explanations and detailed case-study
examples showing the practical application of Axiomatic Design
theory are available in [Suh, 1990], [Suh, 2000], and [Tate, 1999].

2.2 System Architecture Template and the
Fractal Nature of Systems

For large systems, a system architecture can be developed in
the Axiomatic Design framework that breaks down the design
into individual subsystems at each level of the design hierarchy.
In this representation, a system is modeled as a series of
interacting inputs and outputs. These functions follow a pattern
at every level of the design hierarchy, as they fall into one of the
following categories: (1) process functions, the elements of the
system that perform value-added tasks and activities; (2) transport
and interface functions, the elements of the system that perform
internal transportation and external interface tasks, (3) command
and control functions, the logic that schedules and coordinates the
process functions; and (4) support and integration functions, the
support structure for the process and control functions,
including pneumatics, mechanical structure, electronics, etc.
[Hintersteiner, 1999]

By treating each level of the hierarchy as a system composed
of subsystems, the same types of functional requirements appear
at each hierarchical level. Thus, the system is represented in a
recursive manner so that, no matter how deep in the hierarchy one
looks, the general pattern and layout of the representation
remains consistent. This concept is shown graphically in Figure
1. Accordingly, a fractal representation emerges of the multiple
subsystems that are incorporated into the hierarchy of the overall
system. The details at each level are unique, but the general types
of functions and interrelationships remain consistent.
[Hintersteiner, 1999]

Copyright 2000 by the Institute for Axiomatic Design

Figure 1: The concept of a fractal representation for
systems. Each system is only one part of a larger
system’s hierarchy.

In the system architecture, the software for
electromechanical systems is represented by means of command
and control algorithms (CCAs) at each level of the design
hierarchy. At each level, the CCA captures the logic of the
interactions among the hardware elements at that level along with
all of the communication protocols necessary to interact with its
immediate parent and child CCAs. Thus, a software hierarchy
emerges that mirrors the hardware hierarchy, through the
software design is distributed and embedded within the hardware
design. [Hintersteiner & Tate, 1998]

Because it is a system itself, the control software in complex
systems follows the system architecture template. The software
programs used to control systems (1) control the value-added
tasks are performed, (2) interface with users (i.e., operators,
maintenance engineers, or autonomous external computers), (3)
coordinate the ordering and processing of commands and
activities, and (4) recover from errors and perform other
supporting tasks. Accordingly, it is possible to describe each
CCA using the system architecture template, consisting of
process programs, interfaces, control logic, and support and
integration functions. [Hintersteiner & Nain, 1999]

2.3 Role of Constraints in System Design

Constraints (Cs) are defined as a specification of the
characteristics that the design solution must possess to be
acceptable to its customers and the company designing it.
Constraints limit the set of acceptable design solutions (DPs) and
influence the definition and scope of the functional
requirements at lower levels of the design hierarchy.

Using error budgeting and allocation, a hierarchy of
constraints is generated which parallels the hierarchy of FRs and
DPs in the system architecture. At a particular level of the
design hierarchy, the associated constraints are derived from the
constraints applied to, and the design decisions made at, the
parent level. Thus, as the designers evolve the decomposition
into increasing levels of detail, the corresponding constraints
become more refined and solution-specific. The advantage of
this technique is that constraints are explicitly passed down from
level to level in the system architecture. Hence, designers
working on a particular subsystem have a clearly articulated set
of constraints which they must follow. This minimizes the risk
that important, though not necessarily obvious, constraints will
be overlooked during the design process.

Constraints are generally classified into one of three
categories: (1) evtical performance specifications (Cp), which

11

incorporate the specific values or thresholds on performance
which must be met or exceeded for the system to be judged a
success, (2) znterface constraints (Ci), which define the interfaces
between the system and its environment, as well as specifying
operands, user interfaces and accessibility, safety issues, and so
forth, and (3) project constraints (Cpr), which specify the resources
available to the project, as well as issues related to backwards
compatibility, imposed tradeoffs, and so forth. [Friedman e al,
2000]

3 AD CAPABILITY MATURITY MODEL (AD CMM)

“The need to create sound syntheses and systemizations of knowledge. .. will
call out a kind of scientific genius which hitherto has existed only as an
aberration: The genius for integration. Of necessity, this means
specialization, as all creative effort does, but this time. .. specializing in the
construction of the whole.”

-- Jose Ortega y Gasset (1944)

In the previous section, an overview was provided of the
tools available for representing large-scale complex systems in
the Axiomatic Design framework. By itself, however, this
technical infrastructure is insufficient for implementing
Axiomatic Design within an engineering organization. For
success, an organizational infrastructure is also required. The
key to this organizational infrastructure is a roadmap for
understanding the organizations current level of capability in
Axiomatic Design, as well as the direction in which the
organization should be moving. Only with this type of roadmap
in place can any coherent implementation plan be developed.

Researchers at CMU developed just such a roadmap for the
Software Engineering and Systems Engineering professions,
which they have dubbed the zmprovement path for process capability.
This is shown in Figure 2. This roadmap consists of six levels of
organizational process capability, ranging from not performed at
all on an organizational level to a fully-developed standardized
process that has quantitative metrics for performance and is
continuously modified and improved. [Bate ¢/ a/,, 1995]

CONTINUQUSLY
3 IMPROVING
2 QUANTITATIVELY 'Estab"sflﬂns
GONTROLLED g“*““ﬁ“e
1 WELL-DEFINED | + Estatiighing gg:glveness
+Definlng a gm;ﬂ:umbleq.lal\ty + Improving procass
0 PLANNED & | _sfanderd process | - Determining eflaciveness
E— TRACKED *Telloning the rogess cepabilty to
§landatd procass apiioniti a4
PERFORMED °Ca';nmlwng to P;""gm e * Objoathely
form managin
INFORMALLY -%elannlng definad procass psrloal?na?-me
NOT +Bags practices | Perermance
« Dlsciplined
PERFORMED | performed pat, e
«Tracking
performance
+Verifying
performance

Figure 2: The improvement path for process capability.

This generality of this model makes it readily applicable to
the implementation of Axiomatic Design in the organization. In
this case, the fundamentals of Axiomatic Design theory, the
system architecture template, and any extensions to Axiomatic
Design theory developed internally by the organization make up
the “base practices” to be performed. The following list

Copyright 2000 by the Institute for Axiomatic Design

provides a detailed explanation of each maturity level for
Axiomatic Design.

Level 0: Not Performed

This describes no performance at an organizational level,
though individuals within the organization may be practicing
Axiomatic Design for their own needs, independently of their
required deliverables. Thus, there are no work products that can
be readily identified or accessed. Performance of Axiomatic
Design is obviously inconsistent and based entirely on individual
knowledge and effort, and thus it is unlikely that a coherent set
of base practices is being applied.

Level 1: Performed Informally

This level represents the beginning of organizational
interest in Axiomatic Design. Typically, one or two small-scale
projects may be selected to incorporate Axiomatic Design, in
order to demonstrate what potential benefits, if any, can be
gained. This helps to build knowledge of Axiomatic Design
while minimizing the risk to the engineering programs, should
the efforts fail. A high reliance must be placed on outside
consultants and/ot employed individuals with outside exposure
to Axiomatic Design. Thus, the success or failure of the
endeavor rests heavily on the knowledge, experience, and “force
of personality” of these experts. Some of the base practices will
be performed throughout the project as experience is gained by
the team, though more are likely to be identified as useful as the
project proceeds. There is likely to be a lack of consistent
planning and tracking, as the organization is still learning and
experimenting, and there is also likely to be great difficulty in
transferring the experiences from one individual or team to
another.

Level 2: Planned and Tracked

This level is the most significant in Axiomatic Design
implementation, as it requires management commitment to
incorporating Axiomatic Design into engineering processes.
Resources, in terms of both dedicated staff and internal funding,
must be provided to build up the necessary infrastructure. From
a technical standpoint, this means building baseline system
architectures for the key designs, in order to provide a starting
point for design modifications and evaluations. From an
organizational standpoint, an implementation plan must be
formed, which includes determining how the system architecture
is going to be used in the organization’s Systems Engineering
processes, developing the programs required to train engineers,
and establishing the metrics to be used to determine the benefits
that the organization is gaining by implementing Axiomatic
Design.

Generally, the base practices will be performed on large-
scale projects, where each project is responsible for its own
planning and tracking. Thus, consistency will be achievable
within a given project, though not necessarily across projects as
the needs of each project and the level of detail that is required
are still being determined. The metrics themselves will also be a
mixture of qualitative and quantitative measures, based on what

12

information is available as well as what information is perceived
to be useful.

The results achieved at this level will be unique for each
organization, based on both the corporate culture and the needs
dictated by the organizations products and services. The
Systems Engineering practices and metrics discussed in Section 4
show one concrete example of how Level 2 can potentially be
achieved in an engineering organization.

Level 3: Well-Defined

This level is achieved when the “kinks” in the Axiomatic
Design implementation have been worked out, and the base
practices have been tailored to meet the organization’s needs. At
this point, standard operating procedures across the organization
can be established based on the good and bad experiences of the
projects. This includes well documented and approved
procedures for the base practices that need to be achieved and
the level of detail required. At this point, a critical mass of the
engineering organization has been trained, allowing the processes
to become = self-sufficient without direct management
intervention. Dedicated staff for each of the programs is still
required, though at this point its responsibilities shift from being
a driving force for implementation to advising and supporting
the programs to ensure that the standard operating procedures
are being followed.

Most engineering organizations implementing Axiomatic
Design should be satisfied once Level 3 maturity is achieved.
Reaching Level 4 or Level 5 maturity will evolve naturally in the
organization, once the standards and procedures have been in
place and used consistently over a long period of time.

Level 4. Quantitatively Controlled

Once sufficient data and knowledge exists, the qualitative
metrics of the Axiomatic Design implementation will become
guantifiable. ‘Thus, a detailed, quantitative understanding of the
Axiomatic Design implementation process is achievable, in terms
of detailed performance measurements. Furthermore, the actual
benefits achieved from using Axiomatic Design, based on
whatever metrics the organization has deemed relevant, are
comparable to a predictable performance based on past
engineering programs.

Level 5: Continuously Improving

At the final level, the quantitative effectiveness metrics are
well established and proven, and Axiomatic Design is fully
integrated into engineering practices. At this level, dedicated
Axiomatic Design staff and resources are no longer needed,! as
Axiomatic Design is now performed reliably by everyone in the
engineering organization, and the benefits from using Axiomatic
Design are widely acknowledged. As the company itself evolves
due to changing products and market conditions, minor changes
and improvements to the Axiomatic Design standards and
procedures may be necessary.

I A possible exception to this would be any staff and resources necessary to
train new employees in Axiomatic Design. Conceivably, however, this task could
be handled within the scope of other training programs, internal publications,
and/or peer mentoring,

Copyright 2000 by the Institute for Axiomatic Design

4 SYSTEMS ENGINEERING PRACTICES AND
IMPLEMENTATION METRICS

“It must be remembered that there is nothing more difficult to plan, more
donbtful of success, nor more dangerous to manage — than the creation of a
new system.”

— Machiavelli (1513)

As identified in the previous section, achieving Level 2
maturity is the most important step in Axiomatic Design
implementation. Once this level of maturity is attained, the
infrastructure and organizational momentum necessary to
achieve Level 3 and higher are in place, and the work needed to
generate the standards and quantitative metrics becomes
relatively straightforward.

Achieving Level 2 maturity, however, is a very challenging
endeavor, requiring both top-down support from management as
well as bottom-up support from engineering. For management
support, well-defined metrics must be established to show the
benefits of using this approach to the bottom line, in terms of
cost savings and improved product quality and customer
satisfaction. For engineering support, a practical plan must be
formed to define the ways Axiomatic Design is going to be used
and controlled, as well as how engineers are going to be trained
and rated on their Axiomatic Design performance.

This section outlines one potential plan that can be used to
achieve Level 2 maturity, and is provided as a concrete though
generalized example. This plan is included to serve as guiding
principles for an engineering organization that has experimented
with Axiomatic Design, achieved Level 1 maturity, and has
undertaken the commitment to implement Axiomatic Design
throughout its engineering organization. Of course, the
implementation plan for each company is unique, as it must be
based on several factors, including the business needs of the
company, the types of products that are designed, the resources
and expertise available, and the good and bad experiences that
the company had while at Level 1.

The plan consists of three elements: Section 4.1 discusses
the AD Systems Engineering practices that incorporates
Axiomatic Design into Systems Engineering, Section 4.2 provides
an overview of the importance of a good training and
certification program. Section 4.3 outlines some potential
metrics that can be used to rate the company’s technical
capability and business effectiveness in implementing Axiomatic
Design.

4.1 AD SYSTEMS ENGINEERING PRACTICES

In order to understand how Axiomatic Design can be useful
to Systems Engineering, it is necessary to understand what the
goals of Systems Engineering are. According to the
International Council on Systems Engineering (INCOSE), the
mission of Systems Engineering is to “assure the fully integrated
development and realization of products which meet
stakeholders’ expectations within cost, schedule, and risk
constraints.” [INCOSE & AIAA, 1997] Thus, Systems
Engineering must take a “cradle-to-grave” approach, focusing on
defining and documenting customer needs and required
functionality, then proceeding with design synthesis and system
validation. ~ Consideration must be made to operations,

13

performance, testing, manufacturing, cost, schedule, training,
support, and disposal.

From the design perspective, therefore, the objective of
Systems Engineering is to control the design process from concept
generation through product delivery, in order to produce the
optimum design solutions that will satisfy customer needs. This
is shown graphically in Figure 3.

)) Simplest, most
Functional Requirements cost-effective

Constraints)
. -ﬂ Definition im plementation Verification solution that
H meets customer
Design Parameters 1 T requweme_nts &
(FRs, Cs, DPs) t constraints

Figure 3: Overview of the Systems Engineering process
flow.

Thus, to integrate Axiomatic Design into the Systems
Engineering process, several key elements must be developed.
First and foremost is the system architecture itself, which will be
used to control the design and verification process. For each
project, the system architecture can be decomposed to the
module / subsystem level based on FRs, Cs, DPs, and the design
matrices. Ultimately, this must be integrated with verification
plans that define the testing and verification details for each FR
and C, error budgets that allocate FRs and Cs from the top level
to the level of relevant design activity, and external models (e.g.
CAD, FEM, simulations, etc.) that characterize the design
performance and provide the basis for acceptance of or
resistance to new FRs and Cs. Furthermore, Axiomatic Design
must also play a key role in formal design reviews, in order to
demonstrate that an appropriate level of design maturity has
been reached at key points in the program.

Successful integration requires appropriate management
support as well as dedicated staff and resources. It cannot be the
job of a core group of engineers to establish the system
architecture for an entire program. Such a core group is not
capable of keeping up with the daily changes to the design, nor
are they capable of convincing the engineers that Axiomatic
Design adds value to the design process.

Instead, a distributed organization is required where the
engineers must have ownership and responsibility of their
portion of the system architecture. To accomplish this, engineers
must be trained and certified not only in the fundamentals of
Axiomatic Design theory, but be given practical experience in
how the organization uses and implements Axiomatic Design. In
addition, the high-level system architecture must be generated
early-on in a project to the point where the lower levels can be
directly handed off to the responsible engineers. Systems
Engineering must have this responsibility, and as the project
proceeds, they must also assist the design engineers to ensure
that the detailed levels of the system architecture remain
consistent with the design assumptions made at higher levels.
Furthermore, Systems FEngineering must work directly with
project managers to reconcile the ramifications of lower-level
design decisions on coupling issues and other design
inconsistencies. An example of this distributed organizational
concept is shown graphically in Figure 4. In this example, the
organizational structure is by major project, and high-level
oversight of the Axiomatic Design efforts on each program is
included to ensure cross-program consistency.

Copyright 2000 by the Institute for Axiomatic Design

AD Coordination

Project Project
Manager Manager
#1 #2
L AD Sys. #1) AD Sys. (#2)
Training Eng. Eng.
& (Project #1) Project #2
Certification (Proj)

|

[TT T

Design Engineers

[T T

Design Engineers

Figure 4: Organization required for effective
implementation of Axiomatic Design.

Accordingly, the system architecture construction itself is
distributed amongst several individuals, as is shown in Figure 5.
To keep this up-to-date, an electronic platform to maintain and
distribute the system architecture is extremely useful. Several
potential tools are available, including commercial databases and
spreadsheets. Acclaro™, developed by Axiomatic Design
Software, Inc., also shows great potential for use as a distribution
and storage system for the system architecture.

Systems
ADSA: Engineering
Top Level |
(FRs, DPs, Cs
down to 2nd or 3rd
level)

Error Budgets

ADSA: Subsystem
Level
(FRs, DPs, Cs
down below 2nd .
and 3rd levels) Design
Engineering

Complete ADSA
Figure 5: Distributed organization of the Axiomatic
Design system architecture.

Req'’s Definition, Allocation, Design Decisions & Verification

The detailed Systems Engineering process flow for design
definition, incorporating the distributed system architecture, is
shown in Figure 6. For an evolutionary design, the process starts
with the system architecture from the previous generation, where
the new changes and additions to the FRs and Cs at the top-level
are incorporated. These changes and additions are then mapped
into the error budgets, models, and system design specifications,
so as to be trickled down to lower levels of the system
architecture. This process leads to shorter design times, and
ultimately a shorter time to market.

It is important for a company that is serious about
implementing Axiomatic Design in its Systems Engineering
practices to be involved in the Axiomatic Design community.
This includes publication in journals and conferences as well
developing exchanges with other companies and academic
institutions.

14

Customer/ Management /
Marketin g Engineering
Inputs Directives

System
RECIEINENS
Document

(FRs, Cs)

Systems Engineering /
Design Engineering ADSA:
Interface Top Level
(FRs, DPs, Cs,
down to 2nd or 3rd
level)
Subg/stem Error
. Desgn [ER RN NN LERRERNRNNERE Budgets N
Specifications & Models

ADSA: Subg/stem

Level (FRs, DPs,
Cs down below 2nd
and 3rd levels)

4

Implementation &
Verification

Figure 6: Detailed systems engineering process flow
incorporating the Axiomatic Design system architecture.

4.2 TRAINING AND CERTIFICATION PROGRAM

When a company is at Level 1, outside consultants are
usually employed to teach the fundamental concepts of
Axiomatic Design to engineers and to work with engineers on
specific small-scale projects. This approach, however, is not
sufficient for teaching large numbers of engineers to perform
Axiomatic Design with sufficient consistency to enable them to
work within the AD Systems Engineering practices. As
discussed above, the design engineers themselves are responsible
for providing their portions of the system architecture. Thus, a
full system architecture has multiple authors, though to be useful
it must maintain consistency at all levels of the hierarchy.
Furthermore, the decision to maintain the system architecture
electronically requires engineers to learn both the software tools
as well as Axiomatic Design methodology. Accordingly,
engineers must be trained and demonstrate mastery in the
following skills:

o Fundamental AD theory — includes understanding FRs,
DPs, PVs, constraints, design matrices, desigh axioms,
decomposition, and constraint refinement

o Issues in Coupling — includes distinguishing between
functional and physical coupling, qualitative issues in the
traceability of requirements, and quantitative issues in
sensitivity analyses

o System Architecture Template — includes representing
systems, understanding the distinctions between process,
transport/interface, control, and support/integration
functionality, and understanding how the baseline system

Copyright 2000 by the Institute for Axiomatic Design

architectures for the major products are organized and
managed

e Software Tools — includes entering information, applying to
design analyses, and integrating into large-scale projects

Furthermore, classroom instruction is not sufficient for
learning and mastering this material — practical application of
these techniques are required. Accordingly, each engineer should
be required to apply what they have learned to their work, and
then present that application to their peers in a design review or
company-wide Axiomatic Design forum. Engineers who
demonstrate suitable proficiency with the material should be
certified. The certification guidelines should be based on the
company’s internal needs as well as the knowledge standards
recognized by the Axiomatic Design community.

4.3 AD IMPLEMENTATION METRICS

Ultimately, organizations are not only interested in how they
are implementing Axiomatic Design, but in how well they are
implementing it and what benefits they are receiving from this
undertaking. Of course, the old adage applies — you are what
you measure. The perceived quality of the implementation and
the improvements made to it over time are a direct result of what
metrics are applied and what activities are rewarded and
encouraged. Accordingly, the metrics used must be chosen very
carefully, to provide data that (a) is relatively easy to directly
collect or indirectly ascertain, and (b) reflects useful information
that can be used for future improvement. This is not a static
process — as the organization’s maturity with Axiomatic Design
grows and the necessary knowledge and data is developed,
metrics may be changed or added. Two example sets of metrics
that can be applied are as follows. This is not necessarily a
complete list, as organizations may decide they wish to track
different factors based on their particular needs.

o Capability metrics provide a measure of the organization’s
technical performance in implementing Axiomatic Design,
and include such elements as:

1. the number of engineers who are trained and certified,

2. the quality and reusability of developed subsystems,

3. the overall quality of the system architecture in terms of
the scope, level of decomposition, detail, and up-to-date
information, and

4. the level of participation in the external Axiomatic
Design community.

e Effectiveness metrics provide a measure of the benefits to the
organization’s business practices as a result of implementing
Axiomatic Design, and include such elements as:

1. the increase in understanding of the design
responsibilities by all parties early-on in the project,

2. the reduction in time to market, with respect to the
shrinkage in the number of design errors, rework
efforts, engineering changes, and design review
meetings, and

3. the increase in product quality and customer
satisfaction, in terms of how well the FRs and Cs are
satisfied by the final product.

15

Note that while some of these metrics may include
quantitative values, most are more qualitative, or are based on
comparing the current performance with past performance on
other programs. Such metrics are natural at Level 2 maturity,
though as this data is collected and interpreted, more refined and
quantitative metrics can be developed.

5 CONCLUSIONS

“Conceptual integrity is the most important consideration in system design.”
— Fredrick P. Brooks, Jr. (1972)

Successful implementation of Axiomatic Design within an
engineering organization requires understanding both the
technical and managerial issues involved. Knowledge of
Axiomatic Design principles is necessary, but standard operating
procedures and metrics must be implemented in order to obtain
both management and engineering support.

To this end, an Axiomatic Design Capability Maturity Model
has been developed, to provide a clear roadmap for
implementing Axiomatic Design. Using this roadmap, Systems
Engineering practices can be established, along with custom
training and certification programs. Furthermore, metrics can
be developed to evaluate the success and utility of the
implementation. Such an infrastructure enables an organization
to successfully incorporate Axiomatic Design into its engineering
practices, and reap the rewards that Axiomatic Design has the
potential to offer.

6 ACKNOWLEDGMENTS

The authors would like to acknowledge the many engineers
and managers at SVG Lithography Systems, Inc. who have
provided us with invaluable feedback and support in our
company’s recent efforts to achieve Level 2 maturity in
Axiomatic Design. Most notably, our thanks go to Dan Cote, VP
of Engineering, for providing the tools, resources, and
management support necessary for this effort.

We would also like to acknowledge several others, including
Dr. Derrick Tate of Axiomatic Design Software, Inc., Professor
Christopher Brown of the Worcester Polytechnic Institute, and
Professor Nam P. Suh of the Massachusetts Institute of
Technology for their insights into teaching Axiomatic Design to
engineers and their detailed knowledge of Axiomatic Design
theory.

7 ABOUT THE AUTHORS

Jason D. Hintersteiner received a Bachelor of Science and Master of
Science in Mechanical Engineering at the Massachusetts Institute
of Technology. His experience includes research projects in
robotics, digital control, error modeling and compensation,
computer networking, as well as two years of postgraduate work
with Professor Nam P. Suh at MIT on the application of
Axiomatic Design to large-scale systems. He is currently a
Senior Staff Engineer at SVG Lithography Systems, Inc., and is
chiefly responsible for coordinating the implementation of
Axiomatic Design throughout the engineering organization.

Copyright 2000 by the Institute for Axiomatic Design

Richard C. Zimmerman received a Bachelor of Science in Physics
and a Bachelor of Arts in Mathematics from the University of
Illinois, and a Master of Science in Optics at the University of
Southern California. He has an extensive systems engineering
background, stemming largely from his work on large-scale state-
of-the-art optical systems, including high energy lasers and the
Chandra x-ray telescope. He is currently the Director of Systems
Engineering at SVG Lithography Systems, Inc.

8 REFERENCES

[Bate et al, 1995] Bate, R., Kuhn, D., Wells, C., ef al. A Systems
Engineering Capability Maturity Model, Version 1.1. CMU
Software Engineering Institute. November 1995. Document
#: SECMM-95-01, CMU/SEI-95-MM-003.

[DelPuerto and Garcia, 2000] DelPuerto, S. and Garcia, J.
“Axiomatic Redesign of Guide Flexures: Improving Product
Reliability and Reducing Manufacturing Cost.” First
International Conference on Axiomatic Design, June 21-23, 2000,
Cambridge, MA USA.

[Fredriksson ez al, 1994] Fredriksson, B., Killander, A. , and
Nordlund, M. “An Effective Model of Transferring New
Methods from Academia to Industry”, Second CIRP
International Workshop on Design Theory and Methodology,
Stockholm, Sweden, pp. 57-67, June 16-17, 1994.

[Friedman ez a/, 2000] Friedman, G., Hintersteiner, J. D.,
Tate, D., and Zimmerman, R. (2000). “Representation of
Constraints in the System Architecture.” Fifth World
Conference on Integrated Design and Process Technology, June 4-8,
2000, Dallas, TX USA.

[Hintersteiner, 1999] Hintersteiner J. D., “A Fractal
Representation for Systems”, International CIRP Design
Seminar, Enschede, the Netherlands, March 24-26, 1999.

[Hintersteiner, 2000] Hintersteiner J. D., “Addressing
Changing Customer Needs by Adapting Design
Requirements”, To be published.

[Hintersteiner and Nain, 1999] Hintersteiner J. D., Nain
A.S., “Integrating Software into Systems: An Axiomatic
Design Approach”, Third International Conference on Engineering
Design and Automation, Vancouver, B. C. Canada, August 1-
4,1999.

[Hintersteiner and Tate, 1998] Hintersteiner J. D., Tate D.,
“Command and Control in Axiomatic Design Theory: Its
Role and Placement in the System Architecture”, Second

International Conference on Engineering Design and Automation,
Maui, HI, Aug. 9-12, 1998.

[INCOSE & AIAA, 1997] INCOSE & AIAA Sys. Eng. Tech.
Comm. “Systems Engineering: A Way of Thinking, A Way
of Doing Business, Enabling Organized Transition from
Need to Product.” http://www.incose.org/, August 1997.

[Leveson, 1995] Leveson N.G., Safeware: System Safety and
Computers, Reading, MA: Addison-Wesley, 1995. ISBN 020-
111972-2

16

[McDonald, 1998 McDonald, C. “Paying Attention to Professor
Pays Off”, WPI Wire, Vol. 12, Num. 1, June 1998.

[Notdlund ez a, 19906] Nordlund M., Tate D., & Suh N. P.,
“Growth of Axiomatic Design through Industrial Practice”,
3rd CIRP Workshop on Design and the Implementation of Intelligent
Manufacturing Systems, Tokyo, Japan, pp. 77-84, June 19-21,
1996.

[Suh, 1990] Suh N. P., The Principles of Design, New Y ork:
Oxford University Press, 1990. ISBN 0-19-504345-6
[Suh, 2000] Suh N. P., Axiomatic Design: Advances and

Applications, New York: Oxford University Press, 2000. To
be published.

[Tate, 1999] Tate D., “A Roadmap for Decomposition:
Activities, Theories, and Tools for System Design”, Ph.D.
Thesis, Department of Mechanical Engineering, MIT,
Cambridge, MA, 1999.

Copyright 2000 by the Institute for Axiomatic Design

17

