
Proceedings of ICAD2000 
First International Conference on Axiomatic Design 

Cambridge, MA – June 21-23, 2000 
ICAD031 

Copyright © 2000 by the Institute for Axiomatic Design  56 

ABSTRACT 
The concept selection problem is to select the 'best' conceptual 
design solution entity from a pool of  feasible alternatives in the 
early concept design stage.  The determination of  a good 
selection criteria is a key for successful design release. In this 
paper, the concept selection problem is formulated as an integer 
programming problem.  Complexity, value, cost and customer 
satisfaction are used to derive the objective function criterion.  
The mathematical form of  the proposed criterion can be 
conveniently obtained by borrowing from the  concepts of  QFD, 
axiomatic design and value engineering.  The criterion is then 
employed into our integer programming formulation which is 
expanded to include technical feasibility and assembly feasibility as 
constraints.  The proposed formulation is sufficiently robust to 
adapt design situations with deterministic information (Part I) or 
fuzzy information (Part II). 

Keywords: Axiomatic Design, Complexity, Integer Programming, 
QFD, Concept Selection 

 

1 INTRODUCTION 
The goal of  engineering design is to create the design entities that 
satisfies the needs and delights of  customers. The designer's 
creativity, experience and scientific knowledge are essential for 
developing good design entities.  Usually, more than one 
conceptual entity will be conceived in a customer-based design 
assignment.  The concept selection problem is to select the best 
design entity that not only satisfies the customer requirements but 
also outperforms the other alternative solutions based on a set of   
selection criteria.  The selection problem involves the following 
three major steps: (1) identification of  the selection criteria, (2) 
the ranking (scoring) of  different design entities against the 
selection criteria, and (3) the identification of  the 'best' (optimum) 
entity.  The selection problem is a trivial problem when only one 
criterion is used. The best conceptual entity is the one that scores 
favorably in the ranking.  However, the problem become more 
complex when multiple criteria are involved. In common 
industrial practice, the selection problem may become judgmental 
and exposed to bias as ranking will be driven to favor some pre-
selected conceptual entity.  The bias problem can be eliminated by 

the systematic employment of  a disciplined selection process.  
The process creditability and robustness are greatly enhanced 
when coupled with the state-of-the-art design theories.   
   
In this paper, we propose to formulate the selection problem as 
an integer programming problem with, mainly, two selection 
criteria: customer satisfaction and design complexity.  The choice 
of  design complexity as a selection criterion is stemming from the 
information axiom (Suh 1990) of  the axiomatic design (AD) 
approach.  In addition,  the proposed formulation is built around 
generic the conceptual framework of  Quality Function 
Deployment (QFD).  

 
This paper is developed as follows:  Section 2 contains the needed 
background, Section 3 is the core section of  Part I and is devoted 
for the deterministic formulation of  the selection problem.  
Section 4 is the conclusion section. 

 
2     BACKGROUND 
 
2.1  Axiomatic Design  
 
Motivated by the absence of  scientific design principles, Suh 
(1990) proposed the use of  axioms as the scientific foundations 
of  design.  Out of  the twelve axioms first suggested, Suh 
introduced the following two basic axioms along with six 
corollaries that a design needs to satisfy : 
 
Axiom 1:   The Independence Axiom 

Maintain the independence of  the functional 
requirements 

 
Axiom 2: The Information Axiom 

Minimize the information content in a design 
   
In axiomatic design approach, the engineering design process is 
described in Figure 1, in which the array of  functional 
requirements (FRs) is the minimum set of  independent 
requirements that completely characterizes the design objective 
based on customer attributes (CAs).  Design is defined as the 
creation of  synthesized solution to satisfy perceived needs 
through the mapping between the FRs in the functional domain 
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and the design parameters (DPs) in the physical domain and 
through the mapping between the DPs and the process variables 
(PVs) in the process domain.  
 
The physical and process mappings can be expressed 
mathematically as 
{FR}mx1  = [A]mxr {DP}rxr1     

    (1)  

{DP}rx1  = [B]rxn {PV}nx1 

 
 
 

CAs
   .
   .
   .

PVs
   .
   .
   .
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   .
   .
   .

DPs
   .
   .
   .

Physical Mapping            Process MappingPhysical Mapping            Process Mapping  
Figure 1. The design process mappings 

 
where {FR}mx1  is the vector of  independent functional 
requirements with m components, {DP}rx1 is the vector of  design 
parameters with r components, {PV}nx1 is the vector of  process 
variables with n components, A is the physical design matrix, and 
B is the process design matrix. The mapping process can be 
mathematically abstracted as the following matrix equation: {FR} 
=[A]{DP}, where FR is the array of  FRs, DP is the array of  
DPs, and A is the design matrix that contains the sensitivity 
coefficients of  the FRs to the mapped-to DPs. The process 
mapping is described by:  {DP}  = [B] {PV} The subsequent 
development uses the physical mapping for illustration purposes.  
Nevertheless, the results and conclusions are equally applicable to 
the process mapping as well.  
 
Axiom 1 states that the design parameters (DPs) and the 
functional requirements (FRs) are related such that a specific DP 
can be adjusted to satisfy its corresponding FR without affecting 
the other functional requirements, which will require that A 
should be either a diagonal matrix or triangular matrix.   
 
After satisfying the Axiom 1, design simplicity is pursued  by 
minimizing the information contents per Axiom 2, where the 
information content is defined as a measure of  complexity. One 
popular measure of  information content is entropy (Shannon 
1948). An FR entropy is related to the probability of  satisfying its 
specification in the physical mapping (the DP in the process 
mapping).  Entropy H can be defined as 

 
H p= − logυ      (2) 

 
Where υ = 2(e), H is measured in bits (nats) ,  p can be defined as 
the probability of  meeting design specifications, which is the area 
of  intersection between the design range  'dr' , (design specifications) 
and the system range 'sr' , (process capability).( see Figure 2).  The 
overlap between design range and system range is called the 

common range 'cr'.  The probability of  success is defined as the 
area (probability) ratio of  the common range to system range, i.e. 
p
p

cr

sr
 (Suh 1995-1996).  Substituting in Eq. (2), we have: 

 

H
p
p

sr

cr
= logυ       (3) 

 

d r

s r

p d f

F R
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T a r g e t  ( F R * )

b i a s  
Figure 2:  The probability of success definition 

 
2.2 Design feasibility in concept selection 
problem 
 
2.2.1 Modules  
 
In practical design process, a product is made of  several 
subsystems, or modules. Each module is designed to deliver an 
array of  independent functional requirements (FRs).  The physical 
entity of  a module is a set of  design parameters DPs grouped 
together in the form of  a product. 
 
Let ai be the number of  the independent FRs in the ith module 
and V be the number of  modules in the product, then total 
number of  independent functional requirements, m, in the 

product should satisfy:  a mv
v

V

=
∑ =

1
.  Assuming probabilistic 

independence, and for any module, the information content of  
the module can be defined as: 
 
     

ii uleule pH mod mod log-= υ     
     

                       ( )= − log ...υ p xp x xpai1 2  

          = -
=

logυ pj
j

ai

1
∑     (4) 

where Pj is the probability of  success of  the FR indexed j, j=1, .., 
a. H stands for entropy.  In an independent design, each FR can 
be viewed as an stand-alone information source, or equivalently, a 
complexity source.  Due to independence, the probability of  
success is multiplicative. Eq. (4)  and it takes Eq. (5) as an average 
form 
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H p pi
i

m

i= −
=
∑ log

1
     (5) 

can be generalized to quantify the information for the whole 
product where the summation is taken up to, m.   The entropy 
described in equation (4) or (5) can be used as an index of  
complexity  for evaluation of  design alternatives.  The smaller H 
indicates less complexity.  It is obvious that H and hence overall 
design complexity can be reduced by maximizing the probability 
of  success.   
 
In practical design process, standard DPs (modules) are often used 
and those have higher probability of  success.  In addition, there 
are several advantages of  using standard DPs. First, designers do 
not have to reinvent what have already exist so the design efforts 
can be saved.  Secondly, the use of  standard DPs will improve the 
quality and reliability levels. 
 
2.2.2  Design feasibility  
 
Clearly, a system or product is made of  a number of  modules. 
Each module can be made of  a set of  DPs. So the key decision in 
design is to select the groups of  DPs that are design feasible. The 
design feasibility here has two aspects; first, the selected group of  
design parameters is able to deliver the FRs required by the 
module and it is called technical feasibility, and secondly, the 
selected group of  DPs should be assembly and manufacturing 
feasible, which means that they can be grouped together with 
current manufacturing and assembly processes.  The design 
parameters in this context are not limited to the intuitive 
assumption of  hardware components, but rather as a generic 
physical instances that can be materialize by hardware, software, 
or fields.  Also, the matrices that are used for feasibility 
assessment (see example) are mathematical representation of  the 
mappings at the same level of  decomposition. 
 
 
Mathematical Formulation of  Technical Feasibility 
Let i be the index of  FRs, i = 1,2,  ..., m; k be the index of  DPs, 
k= 1, 2, …, K; Fi  be the set of  potential (alternative) DPs of  the 
functional requirement FRi with cardinality Ni, and F be the union 
set of  the overall unique potential DPs.   
 
Example 
A given design problem has the following arrays of  design 
functional requirements where the symbol ' '→  denotes the 
possible mapping between the FRs domain and the DPs domain. 
 
FR = {FR1, FR2, FR3}  
FR1 →  F1 = {DP1, DP2}  with N1 =2 
FR2 →  F2 = {DP1, DP3}             with N2 =2 
FR3 →  F3 = {DP1, DP4, DP5}     with N3= 3 
 
For example, FR1 →  F1 = {DP1, DP2} means that FR1 can be 
performed by either DP1 or DP2. It is also assumed that there is 
no duplication of  identical DPs in each module.  For example, 
DP1 can be used to deliver all FR1,FR2 and FR3 in above 
example. When we select this option, then the module will have 

only one DP1. In general, to furnish each module, the union set F 
= U

i
iF , the set of  unique potential DPs will be selected by 

dropping overlaps and its cardinality K ≤  N1 x N2 x .....x Nm. .  
 
When a single DP serves more than one  FR, and in general, 
F Fc dI ≠ φ  will hold for some Fi  pair, where c and d are two 
arbitrary functional requirements in the product, the coupling 
vulnerability  may be created as the result of  Axiom 1 violation. 
In other words, a potential coupling-free (independent) design 
solution can be achieved  when F Fc dI = φ  for c=1, ,2, m-1; 
d=2, 3, …, m, or for a sufficient subset of  F that covers the FRs.  
 
In last example,   the set F = { DP1, DP2, DP3, DP4, DP5} and 
K =5 ( ≤ • • =2 2 3 12 ).  In addition, the mapping process can be 
coded mathematically via the variable 

T
FR DP

ik
i k=

→







1
0
     if 
    otherwise

.  Thus, the technology matrix TmxK is 

defined as 
        DP1   DP2   DP3   DP4   DP5  

T = 
1 1 0 0 0
1 0 1 0 0
1 0 0 1 1

















FR
FR
FR

1
2
3

 

 
There are 12 solution combinations in this example and not all of  
them satisfies the independence condition.  This condition is only 
satisfied by two overall solutions(S1, S2), each of  which is a subset 
of  DPs which can deliver all FRs and also satisfy the 
independence axiom.  
 
         DP2  DP3  DP4          DP2  DP3  DP5  

TS1 = 
1 0 0
0 1 0
0 0 1

















FR
FR
FR

1
2
3

    TS2 = 
1 0 0
0 1 0
0 0 1

















FR
FR
FR

1
2
3

 

 
Mathematical Formulation of  Manufacturing & Assembly 
Feasibility  
The assembly feasibility should be tested in the physical domain 
among the DPs themselves subsequent to the technology 
determination.  The binary 

characterization Z
DP DP

kl
k l=

→







1
0
     if 
    otherwise

 denotes the 

assembly feasibility between pairs of  the DPs.  Zkj = 1  indicates 
that DPk and DPj can be assembled together.  Hence, a 0-1 
assembly matrix ZKxK  can be constructed as follows.  Clearly, the 
Z matrix is symmetrical, i.e. z zkl lk= .  
 
       DP   DP   DP   DP   DP1 2 3 4 5  
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Z = 

1 1 1
1 1

1

1 1
0 0 0

1 0 1 0
1 0 1 1 0
1 0 0 0 1























DP
DP
DP
DP
DP

1
2
3
4
5

 

 
From Z, we can construct the following assembly matrices for the 
S1 and S2 solutions  
 
               DP   DP   DP   2 3 4                  DP   DP   DP   2 3 5                      

    ZS1 = 

1 0 0
0 1 1
0 1 1

















    and      ZS2 = 
1 0 0
0 1 0
0 0 1

















  

 
It is obvious that S1 is only assembly feasible in two DPs: DP3 and 
DP4, while S2 is not assembly feasible at all.  S1 is a technology 
feasible coupling free.  It is some times inevitable to trade 
independence with feasibility as is the case with Solutions S3 and 
S4 below.                                                                  

DP   DP  DP1 2 3            DP   DP  DP1 2 3  

   TS3 = 
1 1 0
1 0 1
1 0 0

















FR
FR
FR

1
2
3

  ZS3 = 
1 1 1
1 1 0
1 0 1

















 

  
             DP   DP   DP1 3 4            DP   DP   DP1 3 4  

   TS4 = 
1 0 0
1 1 0
1 0 1

















FR
FR
FR

1
2
3

 ZS4 = 
1 1 1
1 1 1
1 1 1

















   

Note that S3 is assembly feasible because DP3 and DP2 are 
connected via DP1.  There is no assembly related restrictions on 
S4.  Once the feasibility criteria are satisfied, then the design's 
degree of  coupling can be quantified using  Semangularity and 
Reangularity, the axiomatic measures (Suh 1990).  

 
 
3.  THE CONCEPT SELECTION PROBLEM: 
CRISP FORMULATION 
As the physical mapping process (product design) is performed, it 
is possible that a function may be mapped to many alternative 
physical entities (DPs) with each having its own customer 
perception, manufacturing processes, material variability, 
geometrical tolerance, and other physical attributes.  Therefore, a 
DP is a complexity or an information source.  In the mapping of  
interest, we would like to select the 'best' DPs (PVs) that satisfy 
the FRs (DPs) with the maximum customer satisfaction and 
minimal design vulnerabilities.  To achieve this objective, the 
concept selection problem is formulated by using the framework 
of  QFD and the axiomatic design principles.  

 
In the QFD planning matrix (Figure 3), the product of  

customer Attribute Value (AV), targeted Improvement Ratio (IR) for a 
customer attribute (the row), and the Sales Point (SP) provides a 
weighted measure of  the relative importance of  this customer 

feature, where SP is a measure of  how the raw feature affects 
sales.  The product is denoted AW (Attribute Weight).  The other 
relative measure is the subjective cause-effect weight that a 
function (a column) may play in satisfying a customer attribute . 
For example,  Wij gives a measure of  how much FRi is related to 
CAj. The summation of  Wij  in each column is denoted here as 
FW (function weight), which gives a measure about how much 
this function is related to the overall customer attributes. The 
product of  function weight (FW) of  each function  by the raw 
weight (AW) and sum over all the rows (customer attributes) on 
the right of  House of  Quality provides a measure of  the relative 
importance of  that  function to the overall value for the customer.  

For example, W AWi j
j

J

=
∑

1
 is a measure of  customer perceived 

value for FRi.   Besides the customer perceived value, other  
design criteria should be also considered in design evaluation and 
selection.  In this paper, we are interested in merging the 
complexity measure (Axiom 2)  in the objective function of  our 
integer program.  The inclusion of  complexity as an optimization 
criterion is justified because it relates many design  criteria such as 
tolerance control effort, assembly and manufacturing cost, 
coupling among different DPs, etc. 
 
For each functional requirement, FRi, its complexity (entropy)  is 
also related to which DP is selected to deliver it. If  there are k 
DPs which can deliver FRi, then there are k design instances. The 
entropy of  FRi at instance k ( FR DPi k→ ); DPk ∈ Fi ; k 
=1,2,…,Ni, can be denoted as Hik. In addition, let j be the index 
of  customer attributes; j=1, 2, …, J, then the following  value to 
information index: 

 
 

FR
Custom er  A ttributes                                       P lanning M atrix

Functions  [FR s]

Correlation M atrix

 Function-to-Function Correlation

  A V      IR      SP

C A j W ij             ..........

FW

W i

i

j
j

J

=
=
∑

1

  A V j   IR j      SPj     =AW j

  FR aFR 1.. FR i ..  

W 1j

M odule 1

M odule 2

Figure 3. The QFD House of Quality at some design 
instance 
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 VI
W AW

Hik

i j
j

J

ik
=

=
∑

1
 

 
can be used to evaluate the FRi at the kth design instance, where 
Hik   can be computed by H p pik ik ik= − log , and pik is the 

success probability of  FRi when DPk is used. The larger the value 
to information ratio, the better the design is.  
 
The weights in QFD matrix, that is, W and FW  are more sensitive 
to particular DPs at different design instances.  For example, 
electrical solution entities are usually highly rated in the 
'convenience of  operation' and 'ease of  maintenance' attributes as 
compared to mechanical entities. Therefore, Wik and FWik  should 
be assessed with much attention.   
 
Now, we can formulate the design concept selection problem as 
maximizing value to information ratio subject to technology 
feasibility and assembly feasibility constraints. Specifically, the 
concept selection problem can be formulated as the following 
integer programming problem: 
 

Max
W Y AW

H Y

ik ik j
j=

J

k

K

i

m

ik ik
k

K

i

m.    111

11

∑∑∑

∑∑

==

==

   (6) 

Subject To: 

Y T i i m DPik ik
k

K

k
=
∑ = ∀ ∈

1
1 1         ,  = ,  2,  ...,     ,  F            (7) 

FW Y AW FW Y AWik ik j
j

J

k

K

i

m

ik ik j
j

J

i

m

datum

d

=== ==
∑∑∑ ∑∑>











111 11
               (8) 

H Y Hik ik
k

K

i

m

i
i

m

datum

d

== =
∑∑ ∑<











11 1
              (9) 

Yik       =  0 or 1              (10) 
 
where  md  is the number of  functions in the datum design and Tik 
are the entries of  matrix T.  In this technology feasibility 
formulation, the decision variables are the binary variables Yik  , 
where Yik  =1 indicates that DPk is selected to deliver FRi. The 
objective function is clearly the value to information ratio for the 
whole product, in which the numerator is the customer 
satisfaction index while the denominator is the design complexity 
level.  This objective maximizes customer satisfaction while 
minimizing design complexity.   Constraint (7) forces the selection 
of  one solution entity per a given function.  Constraints (8) and 
(9) translate the word 'best technology' into its mathematical 
definition.  The 'best' selected design is therefore the design that 
outperforms the datum design from the perspectives of  customer 
satisfaction and design simplicity.   
 
Unfortunately, the above program (Eq.s: 6-10) does not eliminate 
the possibility of  obtaining an overall assembly infeasible 

solutions.  An assembly infeasible solution can be achieved in one 
of  two forms.  First, all the DPs are assembly infeasible to each 
other or ,second, some of  the DPs are assembly feasible only at 
subsystem level and overall solution can not be synthesized.  The 
assembly feasibility can be viewed as a tour between the selected 
design DPs where each is visited once starting from a DP of  
reference.  Therefore, an overall assembly feasible solution is the 
one that has only one tour (loop) such that all sub-tours are 
eliminated.  This reasoning is adopted from Traveling Salesman 
Problem (TPS) (Salkin & Mathur 1989).  The program in Eq.s: 6-
10 can be rectified to account for assembly feasibility when 

augmented by Y Y Z m i uik ul kl
u i

m

i

m
≤ − ≠

= +=

−
∑∑ 1
11

1
,   where the binary 

characterization Zkl's are the entries of  matrix Z.  An assembly-
feasible design with m selected components is the one that has at 
most m-1 non-zero Zkl 's.  That is, in order to synthesize a 
solution, we need to satisfy simultaneously the technology 
requirement between a pair of  functional requirements through 
the viable selection of  DPk for FRi and DPl for FRu and the 
assembly requirement between DPk and DPl i.e. Zkl =1.  This 
feasibility assurance process is expanded to all possible pairs of  
functional requirements.  The use of  this constraint prevents the 
selection of  islands of  physical entities that only assembly feasible 
at subsystem level.  
 
This formulation can further be enhanced to include the  value to 
cost performance index, PI.  The formulation can be written as:   
 

Max
PI W Y AW

H Y

ik ik ik j
j=

J

k

K

i

m

ik ik
k

K

i

m.    111

11

∑∑∑

∑∑

==

==

   (11) 

Subject To: 

Y T i i m DPik ik
k

K

k
=
∑ = ∀ ∈

1
1 1         ,  = ,  2,  ... ,     ,  F           (12)

  

PI FW Y AW PI FW Y AWik ik ik j
j

J

k

K

i

m

ik ik ik j
j

J

i

m

datum

d

>










=== =
∑∑∑ ∑∑

111 1
 

   (13) 

H Y Hik ik
k

K

i

m

i
i

m

datum

d

== =
∑∑ ∑<











11 1
            (14) 

Y Y Z m i u i m

u m

ik ul kl
u i

m

i

m
≤ − ≠ = −

=
= +=

−
∑∑ 1 1 2 1

2 3
11

1
,   

                                            

; , ,..., ;

, ,...,
             (15) 

Yik       =  0 or 1                           (16) 
 
Where PIik  is the value-to-cost performance index of  the function 
i at instance k. 
 
The selected solution entity of  the proposed framework will 
achieve higher performance of  design requirements from a multi-
disciplinary perspective.  For example, from the perspective of  
value engineering, the selected optimum should possess a higher 
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total value than a datum design.  Higher value performance is 
fostered by the process of  eliminating unnecessary functions and 
delivering functional requirements with value-optimized physical 
solutions while customer satisfaction drives the selection process 
(Eq.s: 6 and 11).  
 

The elimination or reduction of  design coupling may result in 
added complexity.  The use of  additional DPs to eliminate or 
reduce coupling may increases the overall design complexity 
because the cardinality, m, will increase.  As formulated here, the 
entity's overall complexity takes m as an argument and is a 
function of  the underlying probability distributions of  the design 
parameters and/or process variables.  The use of  probability 
distributions indicate the case of  the incremental design 
classification, i.e. experienced design situations with precise data 
that allow the calculation of  Hik.  Incremental design is a design 
that is within a slight variation of  the current design.  In many 
design situations, especially those classified as creative design 
solutions, we do not have this luxury of  information and Hik can 
not be calculated.  The type of  information in the creative 
situation is qualitative and fuzzy in the form of  engineering 
judgment.  Another approach to assess complexity and other 
arguments in the integer program presented here is needed and 
should be based on fuzzy set theory.  The fuzzy formulation is 
presented in Part II.  
 
4.  CONCLUSIONS 
The concept selection problem can be solved using the integer 
programming formulation proposed here.  The  selection criteria 
include the complexity, customer satisfaction, and design value. 
Design complexity is measured by information content using 
Shannon entropy which in turn takes the probability of  success as 
arguments.  In incremental design situations, these probabilities 
can be quantified and to be  used in the deterministic integer 
programming [Eq.s: (11)-(16)].  The formulation presented here 
produces an optimum, i.e. best selected entity that maximizes 
customer satisfaction, value, and simplicity within design and 
manufacturing  feasible configurations. 
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