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ABSTRACT 
Axiomatic Design holds that uncoupled designs are to be 

preferred over coupled designs.  This paper documents an effort 
to empirically quantify the effects of  coupling on the design 
process and how those effects depend on the scale of  the 
problem (number of  design variables).  An experiment was 
conducted with human subjects who solved parameter design 
tasks through a simple graphical user interface. It is established 
that, for parameter design tasks with only two inputs and two 
outputs, coupling had only a moderate effect on the subjects’ 
solution of  the problem.  As the number of  variables increases, 
the effect of  coupling among variables has a drastic effect on the 
solution procedures and the completion time.  The time for a 
human to solve a coupled parameter design problem rises 
geometrically as problem size rises from 2X2 to 5X5.  These 
results are discussed in the context of  information processing 
models of  human cognition.  The implications for Axiomatic 
Design are discussed. 
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1 BACKGROUND AND MOTIVATION 

1.1 COUPLING AND AXIOMATIC DESIGN 
In Axiomatic Design, the Independence Axiom states: 

“maintain the independence of  the functional requirements” 
[Suh, 1990]. This axiom can be interpreted using the design 
matrix, A, which represents the mapping between Design 
Parameters (DPs) and Functional Requirements (FRs)  
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The elements of  this design matrix are defined in terms of  partial 
derivatives  
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An uncoupled design is a design whose matrix A can be 
“represented by a diagonal matrix whose diagonal elements are 
only non-zero elements” [Suh, 1990].  A decoupled design is a 
design whose matrix A can be arranged into a triangular matrix.  
All designs that are neither uncoupled nor decoupled are coupled 
designs.  The Independence Axiom states that only uncoupled 
and decoupled designs are acceptable.  
 Suh holds that the Independence Axiom is among the set of  
“general principles or self-evident truths that that cannot be 
derived or proved to be true except that there are no counter-

examples or exceptions” [Suh, 1990].  The authors conducted 
experiments to test the Independence Axiom.  This paper will 
show that human subjects can satisfy functional requirements via 
parameter design even faced with coupled systems, but that the 
negative consequences of  coupling scale very unfavorably.  To 
make this statement precise, we must now define and discuss the 
terms “parameter design” and “scale”.       

1.2 PARAMETER DESIGN AND SCALE 
Let us define parameter design as the process of  adjusting 

the values of  the DPs in order to achieve desired values of  the 
FRs.  Parameter design is therefore distinct from and subsequent 
to the conceptual design process in which the design parameters 
are selected and the structure of  the design matrix is determined. 

The interplay of  parameter design and coupling is central to 
the theory of  Axiomatic Design.  In fact, Suh restates the 
Independence Axiom as -- “in an acceptable design, the design 
parameters and functional requirements are related in such a way 
that the specific design parameter can be adjusted to satisfy its 
corresponding functional requirement without affecting other 
functional requirements” [Suh, 1990].  Based on this quote, one 
might infer that a coupled design is unacceptable within 
Axiomatic Design because coupling makes parameter design 
more difficult. 

Some of  the design theorems seem make even stronger 
claims about coupling and parameter design.  For example, 
Theorem 9 (Design for Manufacturability) states -- “For a 
product to be manufacturable, the design matrix of  a product, [A] 
… times the design matrix for the manufacturing process, [B] … 
must yield either a diagonal or triangular matrix.  Consequently, 
when … either [A] or [B] represents a coupled design, the 
product cannot be manufactured.”  Therefore, one might infer 
that Axiomatic Design holds that coupling makes parameter 
design not only difficult, but impossible.  It is of  significant 
practical importance whether or not coupling makes parameter 
design impossible or merely difficult.  And if  coupling makes 
parameter design difficult, it is valuable to know approximately 
how difficult.  

We posit that the degree of  difficulty related to coupling is 
strongly determined by the scale of  the design problem.  We 
define the scale of  the design problem as the number of  FRs to 
be satisfied.  The purpose of  this paper is to quantify the 
difficulties associated with parameter design of  coupled systems 
and to determine the effect of  scale.  In particular, this paper 
focuses on how coupling makes parameter design difficult for 
people as opposed to computers.  The next section provides some 
background on human cognition in order to prepare the reader to 
interpret the results of  our experiments.  
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1.3 COGNITIVE SCIENCE 2 EXPERIMENTAL METHOD 

Modern cognitive science makes a distinction between the 
information storage and processing facilities of  the human mind.  
Information storage capabilities of  the mind are divided into two 
distinct categories, short-term memory and long-term memory.  
The activities of  the information storage and processing 
structures of  the human mind are directed by the central 
executive function, which focuses attention, allocates resources, 
and directs and controls cognitive processes.  Although the 
evidence for such a supervisory structure in the mind is clear, it is 
poorly understood in comparison with most other basic cognitive 
structures [Cowan 1995].   

Our goal was to investigate the effect of  problem scale and 
coupling on human capability to carry out parameter design.  To 
facilitate our investigation, we chose to develop a surrogate for 
the parameter design process to capture the essential features we 
wished to study as listed below:  

1. The mapping from input to output can be coupled or 
uncoupled. 

2. Problems may differ in scale. 
3. The designer can obtain information about the current 

state and desired state of  the outputs only at discrete points in 
time.   

The psychologist George A. Miller made an early and 
influential contribution to the understanding of  the limits of  
humans as information processing agents.  In “The Magical 
Number Seven, Plus or Minus Two,” Miller [1956] proposed that 
human short-term memory capacity was limited by several 
factors.  First, he suggested that what he called the “span of  
absolute judgment” was somewhere between 2.2 to 3 bits of  
information, with each bit corresponding to two options in a 
binary scheme.   

The parameter design surrogate retains these features and 
strips away any real world context for the design.  This simplified 
representation prevents confounding with the subjects’ 
knowledge of  any specific field of  engineering.   

The parameter design surrogate was embodied in software 
with a graphical user interface (GUI) as depicted in Figure 1.  In 
order to solve a parameter design problem, human subjects were 
required to adjust the input variables (design parameters) 
controlled by slider bars on the GUI until the output variables 
(functional requirements) indicated by gauges on the GUI fell 
within specified ranges.  The “target range” within which the 
output had to fall for the design problem to be considered 
completed, or “solved,” was set at 5% of  the range of  the output 
variable display gauge range.  

This severe short-term memory limitation raises a paradox.  
How then could one possibly remember an entire sentence if  a 
single word has about 10 bits of  information?  Miller proposed 
that people actively engage in the “chunking” of  information as it 
is encoded in their memory to circumvent the span limitation.  In 
this scheme the number of  bits of  information is constant for 
“absolute judgment” and the number of  “chunks” of  
information storable within the short-term memory is also 
constant and both regimes are governed by the   rule.  Miller 
suggested that since the short-term memory span is fixed at   
chunks of  information, the amount of  data that it actually 
contains can be increased by creating larger and larger chunks of  
information, each containing more bits than before.  To do this, 
the information is converted into more efficient representations 
as it is encoded in the memory.  So, as input is received by an 
individual in a form that consists of  many chunks with few bits 
per chunk, it is re-coded so that it is contained in fewer chunks 
with more bits per chunk (Miller 1956).   

Figure 1 depicts a GUI for a 3X3 parameter design task.  
Other GUIs for 2X2, 4X4, and 5X5 problems were created by 
adding or removing slider bars and output gauges.  In pilot 
studies, we attempted to present human subjects with 6X6 tasks, 
but a substantial fraction became frustrated and would not 
complete the tasks.  Therefore, we chose to limit the range of  
problem sizes in our study. 

 

Inputs controllable 
by subject

Outputs observable 
by subject

Target ranges

Clicking in the “trough,”
or moving the slider
button directly, allows
more coarse adjustments
to be made

Clicking on the arrow
allows fine adjustments
to the indicator position

The Refresh Plot Button
recalculates positions of
output indicators based on
subject’s input

 

Although there is still debate over the extent and nature 
of  human short-term memory limitations, the facts most can 
agree upon are that such limitations exist and that they impose a 
significant bottleneck on the information processing capabilities 
of  the mind.  A large body of  research has supported the 
significance of  short-term memory limitations with respect to the 
performance of  activities as diverse as game playing, expert 
system design, and personnel selection (Chase and Simon 1973, 
Enkawa and Salvendy 1989). Studies have proven short term 
memory limits be significant in engineering (Christiaans and 
Dorst 1992, Condoor et al. 1992), the design of  CAD systems 
(Robertson et al. 1991, Waern 1989), finance and economics (Chi 
and Fan 1997), AI and expert systems (Enkawa and Salvendy 
1989), management decision making (Mackay et al. 1992), and 
operations research (Robinson and Swink 1994)]. The experiment 
described in the next section is intended to establish the 
importance of  human cognitive limits in yet another area -- 
parameter design. 

Figure 1. The parameter design surrogate. 
 

The output variable display gauges were not designed to 
update themselves smoothly and continuously as the inputs were 
varied.  Instead, the positions of  the output variable indicators in  
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In addition, a solution vector with a Euclidean norm of  1 

was selected at random for each design problem from a set of  
twenty-five unique vectors created for each different size of  
design matrix.  Since the solution vectors were normalized, the 
Euclidean distance between the starting point of  the output 
variables (always at the origin of  each gauge on the Task GUI) to 
the solution position (i.e. the target range) would be the same for 
each experiment involving a given design matrix.  This created a 
degree consistency among all the solutions.  Randomizing the 
selection of  the solution vector also reduced the likelihood of  a 
particularly easy or difficult solution recurring consistently and 
affecting the experimental results. 

the displays were only recalculated and updated after the “Refresh 
Plot” button on the lower right-hand side of  the Task GUI was 
pressed by the subject.  Forcing participants to press a “Refresh 
Plot” button creates some additional difficulties for the subject.  
If  the outputs were dynamically updated as the slider bars moved, 
it would have been easier to infer the relationship among the 
variables. However, the “Refresh Plot” feature was a deliberate 
choice.  Design scenarios generally involve making step changes 
to a prototype or computer model and getting information on the 
effects of  those changes only when a test is run or an analysis is 
carried out.  Designers rarely have the luxury of  a dynamic 
update of  the effects of  their design changes. 

To summarize, the parameter design surrogate is a simplified 
parameter design task embodied in a graphical user interface 
(GUI).  The inputs are represented as slider bars and the outputs 
are represented as vertical gauges.  The mapping from inputs to 
outputs is determined by a matrix, some of  which were entirely 
uncoupled, some of  which were strongly coupled.  Twelve human 
subjects completed a series of  tasks presented in randomized 
order with different numbers of  variables (from 2X2 to 5X5).  
The changes in the inputs and outputs and the times at which 
they were made were recorded automatically.  The next section 
will present an analysis of  the data from this experiment.  

The effects of  the slider bars on the outputs was determined 
by a matrix of  derivatives as defined in Equations 1 and 2. The 
matrices used to represent the design process were carefully 
selected to facilitate investigation of  the effects of  coupling and 
scale.  Some of  the design matrices were diagonal to provide a 
baseline of  performance with no coupling among design 
variables.  Other design matrices were strongly coupled and 
orthonormal.  An example of  one of  the matrices used in the 
experiment is given in Table 1.  In all the matrices used in this 
experiment, there were large off  diagonal elements (often as large 
as the on-diagonal elements).  Orthogonality guaranteed that the 
matrix would be well conditioned.  Normalization ensured that all 
of  the input variables would be balanced with respect to one 
another with none having a disproportionate effect on the output 
variables.  Similarly, all of  the output variables are balanced with 
respect to one another with none being more or less controllable 
by the input variables. 

   

3 RESULTS 
This section presents the results of  our experiments with the 

parameter design surrogate described in section 2. The data will 
be examined and discussed in the context of  a cognitive science 
perspective of  human information processing and problem 
solving.   

Table 1. An example of a 3X3 matrix used in the 
parameter design surrogate. To present examples of  subject’s behavior in this experiment, 

we will employ a graphical representations such as in Figures 2 ,3, 
4, and 6.  The large gray point is the starting value.  The black 
points represent the values returned each time the subject pressed 
the “Refresh Plot” button.  The black lines connect each pair of  
sequential points as an aid to visualizing the sequence of  the 
changes made.  The open gray box represents the target range.  It 
is important to note that the subjects did not have access to such 
a plot during the experiment.    

 Input #1 Input #2 Input #3 
Output #1 0.683 -0.658 0.317 
Output #2 0.658 0.366 -0.658 
Output #3 0.317 0.658 0.683 

   
 Twelve human subjects were used in our study.  They 

were paid a small sum for their efforts.  The set of  experiments 
was conducted following a uniform protocol.  Subjects were 
seated at a computer in a laboratory and given a scripted 
presentation on the use of  the GUI.  During the experiment, 
subjects were not allowed to use pens, paper, or computational 
aids.  Whenever the subject hit the “Refresh Plot” button, the 
program recorded the time and the position of  the inputs and 
outputs.    

A typical strategy for subjects solving uncoupled systems was 
to move one slider bar at a time to adjust the corresponding 
output onto its target and to repeat the process for each slider in 
turn. The subject’s performance depicted in Figure 2 is an 
example of  this solution strategy for a 3X3 system, but the same 
pattern was evident in all the systems from 2X2 to 5X5.  Because 
this was an uncoupled system, the effect of  moving one slider bar 
is to move the output value parallel to one of  the axes in the 
graph.  Figure 2 reveals that multiple adjustments were needed to 
get each variable on target and that the subjects sometimes 
overshot the target. 

A brief  demonstration exercise was required at the outset to 
teach each subject how to use the software.  The software was 
designed to allow subjects to pause between design problems 
during the experiment and re-start the program when they were 
ready to continue, or quit the program if  they wished (these 
features were required by the University’s committee on the use 
of  humans as experimental subjects). The software presented the 
design tasks to the subjects in a randomly selected order that was 
changed for each participant.  This was done to avoid 
inadvertently training the subjects by progressing from “easy” to 
“hard” systems and to minimize any other possible effects a 
consistent design task order might have had on the outcome of  
the experiments.   
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Figure 3. A typical solution strategy employed by a human 
subject solving a coupled 2X2 system. 

Figure 2. A typical solution strategy employed by a human 
subject solving an uncoupled 3X3 system. 

  
As a result of  the directness of  the solution of  2X2 coupled 

systems, the times were only modestly affected as compared with 
uncoupled 2X2 systems.  The 31 coupled 2X2 systems solved by 
the subjects took on average 40 seconds to solve.  By comparison, 
the uncoupled systems required 24 seconds (about 40% less 
time).  This difference in the means was statistically significant 
(α=0.05), but the practical significance seems very small 
compared with the differences for the larger systems studied 
(3X3, 4X4, and 5X5).   

The behavior of  subjects solving coupled 2X2 systems was 
qualitatively similar to the their approach to solving uncoupled 
systems.  An example of  a subject’s performance is shown in 
Figure 3.  Again, the input slider bars were moved one at a time, 
but in the coupled system, this resulted in changes along lines 
skew to the axes.  The main similarity between the approach to 
the coupled system (in Figure 3) and approach to the uncoupled 
system (in Figure 2) is the directness of  the solution.  The 
changes made by the subjects tended to move the state of  the 
outputs closer to the solution (in the Euclidean sense).  There 
were some exceptions to this.  Some non-converging moves are 
seen early in the solution process as the subject works to discover 
the dependencies of  outputs on inputs. But after each slider bar 
had been moved once, the state of  the outputs generally moved 
consistently closer to the target.   

On the basis of  cognitive parameters, one may construct an 
approximate explanation of  the modest increase in completion 
times for 2X2 coupled systems compared to uncoupled 2X2 
uncoupled systems.  The coupled 2X2 systems have require two 
more scalar values to characterize them.  If  the two extra scalars 
were stored as digits in long-term memory, then approximately 10 
extra seconds should be required.  Also, the mental arithmetic or 
graphical manipulations required for solution are more complex 
for coupled systems.  The 16 second increase revealed in this 
study seems reasonably consistent with what is known of  human 
cognitive parameters.  To more precisely determine the causes of  
the increase will likely require additional experiments.  For the 
present, the authors prefer to focus on the much larger effects 
that are revealed as the number of  variables increases beyond 
2X2. 

The fact that 2X2 coupled systems could be solved in a 
direct manner is generally consistent with the results of  cognitive 
scientists’ investigations of  human limitations on information 
processing.  A fully coupled 2X2 linear system requires only four 
scalar values to completely characterize its behavior.  Since our 
targets cover 5% of  the available range, one digit of  precision 
would provide almost enough information to solve the problem.  
Given Miller’s “Magical Number Seven, Plus or Minus Two”, one 
would expect that an approximate model of  these 2X2 systems to 
be within the “span of  absolute judgment” of  most humans.  We 
conjecture that once the four parameters governing the behavior 
of  the coupled systems were learned, the subject was able to 
proceed with the solution of  coupled 2X2 systems almost as if  
they were uncoupled.   
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Figure 4. A typical solution strategy employed by a human 

subject solving a coupled 3X3 system. 
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Figure 5. The convergence of the strategy used for the 

coupled 3X3 system in Figure 4. 
 

In the 3X3, 4X4 and 5X5 coupled systems, the solution 
procedures employed by subjects appeared qualitatively different 
than that observed in the 2X2 coupled systems.  A typical 
example of  solution behavior for 3X3 systems is shown in Figure 
4.  It appears to include random steps in 3D space with the step 
size decreasing as the distance to the target decreases.  The 
convergence of  the solution method of  Figure 4 is graphed in 
Figure 5.  The Euclidean distance from the target generally 

y1 y2, y3,( ) t1 t2, t3,( ), s s, s,( ),

                             Legend
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Point evaluated by the subject
Target range

 
 

Figure 6. An alternative solution strategy employed by a 
human subject solving a coupled 3X3 system. 
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Figure 7. The convergence of the strategy used for the 

coupled 3X3 system in Figure 6. 
 

decreases over time despite the fact that almost half  of  the moves 
result in movement away from the target.  The subjects may be 
moving slider bars in sequence in an attempt to get “closer” to 
the target (perhaps in the Euclidean sense).   To determine 
whether a move is “closer” to the target requires only that the 
previous state of  the outputs be retained in memory.  The current 
state is available on the screen (a form of  external memory).  A 
difference can therefore be computed and processed.  At any 
given point, one or more of  the bars will allow some degree of  
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movement toward the target.  The subjects seem to cycle through 
the slider bars in different sequences seeking sliders that will allow 
them to move closer to the target.       

In some cases, the subjects seem to employ a different 
approach that includes very extensive sampling in areas of  space 
not containing the target (see Figure 6).  In these cases, it appears 
that the subject is focused on only two output variables and two 
input variables.  The subject works to place those variables within 
their target range while the remaining variables are substantially 
off  of  their target values.  Following this extensive search within 
an area of  space that does not include the solution, large moves 
are made with the remaining variables and the process is repeated 
with a different selective focus on the output variables. Figure 7 
shows the convergence over time of  the solution approach in 
Figure 6.  The convergence includes plateaus with little change 
followed by large changes leading to new, lower plateaus.  With 
this approach, the subjects may be attempting to bring the 
problem back within their “span of  absolute judgment”.  By 
selecting a 2X2 subset of  the larger problem, the subject is able 
to make a sequence of  moves that take them monotonically to a 
region of  space in which two outputs are on target.  After some 
local search confirms that the complete solution is not available, 
larger moves in an orthogonal direction are made and the process 
is repeated.  

Despite the fact that at least two distinct approaches were 
employed in solving coupled problems, there was no clear bi-
modality in the distribution of  completion times.  The 
distributions were not normal (as verified by Anderson-Darling 
and Kolmogorov-Smirnov tests).  There was significant skew 
towards long completion times.  

To summarize the results of  this section, the subjects 
completed the uncoupled tasks in a sequential process, placing 
each output on target using its corresponding slider bar.  The 
subjects completed coupled 2X2 tasks in a fairly direct manner 
with few missteps after the underlying dependencies among 
inputs and outputs were determined.  There was a modest but 
statistically significant increase in time required to complete the 
coupled 2X2 tasks as compared to uncoupled 2X2 tasks.  The 
solution procedures employed by subjects for coupled 3X3, 4X4 
and 5X5 tasks seemed qualitatively different than those for 2X2 
systems.  Solution of  these larger systems involved more 
iteration, a greater fraction of  non-converging moves, and much 
more time.  The next section will quantify that time penalty for 
coupling more precisely by proposing scaling laws for time versus 
problem size.     

 

4 PRPOSED SCALING LAW 
This section will propose scaling laws for the growth of  
completion time versus number of  variables in the problem.  
Such scaling laws are commonly used to characterize the 
“complexity” of  algorithms.  Uncoupled and coupled systems are 
analyzed to provide separate scaling laws due to the significant 
differences in the effects of  scale on coupled systems versus 
uncoupled systems.   

Figure 8 presents the normalized task completion times for 
fully coupled matrices and for uncoupled matrices.  The graph 
indicates that completion time increased much more rapidly with 

matrix size for coupled matrices than for diagonal matrices.  The 
error bars on the data points indicate standard deviation of  the 
normalized completion time.  The standard deviation of  the time 
rises with the completion time.   

 

The Effect of Coupling and Scale on Completion Time 

0

10

20

30

40

50

1 2 3 4 5 6

Number of Variables

N
or

m
al

iz
ed

 C
om

pl
et

io
n 

Ti
m

e

Full Matrix Uncoupled Matrix 
 

Figure 8. Normalized completion times versus scale. 
 
The normalization procedure for the data in Figure 8 

warrants some explanation.  There was a great deal of  variation in 
how long it took individuals to complete the set of  tasks.  Some 
were able to complete all of  the design problems included in the 
experiment within about 45 minutes, while other subjects took 
nearly three times longer.  To better reveal the way that 
completion time is affected by scale and coupling, we normalized 
the task completion time for each subject by the time to complete 
one particular 2X2 fully coupled matrix that each subject solved 
at some random point after the training period.  This 
normalization procedure allowed us to correct for such inter-
subject variations as facility in manipulating a mouse.   

For uncoupled systems, normalized task completion times 
scale linearly with matrix size. Linear regression of  the 
normalized completion time data versus problem size, n, fit a 
standard linear model with an adjusted R-square of  0.71.  The 
regression model’s residuals indicated that they were randomly 
distributed.  Virtually none of  the residual error in the regression 
model was due to lack of  fit -- a regression of  the average 
normalized completion times fit a standard linear model with an 
adjusted R-square of  0.90.      

The linear scaling law for uncoupled problems is consistent 
with the observations made in Section 4.  Given the sequential 
nature of  the solution process observed, the subjects had only to 
store a single scalar parameter at a time.  The number of  times a 
parameter had to be learned and the time for iterative 
adjustments should grow linearly with n given the solution 
procedure we observed.   

For fully coupled systems, normalized task completion time 
scales geometrically with matrix size (there is roughly a factor of  
three increase with each increment of  problem size, n).  Linear 
regression of  the log of  normalized completion time data versus 
problem size, n, fit a standard linear model with an adjusted R-
square of  0.70.  The regression model’s residuals indicated that 
they were randomly distributed.  Virtually none of  the residual 
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error in the regression model was due to lack of  fit -- a regression 
of  the average log of  normalized completion times fit a standard 
linear model with an adjusted R-square of  0.99.  Based on the 
slope of  the best fit line of  the log transformed data, the 
normalized completion time for fully coupled matrices was found 
to be proportional to 3.4 raised to the power of  the problem size 
n. 

The geometric form of  the scaling law may be explained in 
an approximate sense on the basis of  the observations in section 
3.  The subjects tended to use a solution process that resembled a 
random sampling within a limited region of  n dimensional space.  
The target was a hyper cube with the length of  the side constant 
with n.  Let us model the human search procedure as random 
sampling within a space of  fixed linear dimension with a target of  
fixed linear dimension.  Let us assume that the time required for 
each sample is constant.  Based on this model, the average 
number of  samples required to hit the target should grow 
geometrically with n.   The observations in section 3 show that 
the subjects’ performance was more complex and varied than the 
simple model described above.  The model is not offered as a 
complete explanation of  the scaling law, but this simple model 
may provide some insight into the reason that geometric growth 
was observed.  

The observations of  section 4 suggest that the subjects’ 
performance was qualitatively different for 2X2 coupled systems 
as compared with 3X3 and larger coupled systems.  Therefore, 
one would not expect the same scaling law to fit the data at n =2 
that fits the data at n =3, 4, and 5.  Nevertheless, the data from 
this experiment show both that the solution procedure was 
different and that the scaling law fits.  We do not have an 
adequate explanation for this fact, and suspect that it is merely 
coincidental.    

The unfavorable scaling of  problem completion time with 
problem size is supported by other research on human 
performance of  mental calculations.  Completion time for mental 
arithmetic tasks correlates well with the product of  the digits or 
square of  the largest digit involved in the calculation (Dehaene 
1997, Simon 1974).  This scaling law appears to be valid whether 
the mathematical operation in question is multiplication, division, 
addition, or subtraction, and is likely to be due to both short- and 
long-term memory constraints and the degree and type of  
domain-related training received by the subject (Ashcraft 1992).    

Geometric scaling of  human performance in solving coupled 
linear systems is in contrast to that required for solution by 
formal algorithms.  An LU factorization of  an n by n linear 
system followed by Gaussian elimination to find the solution to 
the problem requires nnn

6
7

2
5

3
2 23 −+  mathematical operations.  

Therefore, formal solution of  linear systems is  while 
human performance in this study was  Ο .  The difference 
in these scaling laws is significant even in the small range of  n 
tested in these experiments (from two to five).  The predictions 
of  these scaling laws differ by over a factor of  two as n rises from 
two to five.   

)( 3nΟ
)4.3( n

To summarize the results of  this section, time for the 
human subjects to complete uncoupled parameter design tasks 
scales linearly with problem size.  In contrast, time for the human 

subjects to complete coupled parameter design tasks scales 
geometrically with problem size; a roughly three-fold increase in 
time is required for each additional variable as problems grow 
from 2X2 to 5X5.  This is very different from the polynomial 
scaling law for computers to solve similar systems.  The poor 
scaling of  human solution on coupled parameter design problems 
seems to arise from the stochastic features of  the iterative process 
humans employ.    
 

5 RELATIONSHIP TO AXIOMATIC DESIGN 
Great care should be taken in applying the results of  this 

paper to authentic design scenarios.  The simplified parameter 
design task investigated here neglects a host of  considerations 
that are present in engineering design.  The difficulty of  a 
parameter design problem can depend many factors including the 
designer’s experience and skill in the given domain or the 
presence of  external problem solving aids (i.e. CAD and other 
tools).  Nevertheless, this study provides some insights that may 
have significant bearing for engineering design in general and 
Axiomatic Design in particular. 

In one sense, the results of  this experiment may provide an 
empirical justification for the Independence Axiom.  This paper 
experimentally demonstrates the strong effects of  coupling on 
human performance in design tasks.   

Although this paper reinforces Axiomatic Design’s caution 
against coupling, some aspects of  Axiomatic Design theory 
should perhaps be reinterpreted in light of  these new 
experimental results.  The wording in The Principles of  Design 
[Suh, 1990] sometimes suggests that coupled designs are 
unacceptable and that they cannot meet the stated functional 
requirements.  For example, Theorem #9 states that a design with 
a coupled mapping from either FRs to DPs or from DPs to PVs 
cannot be manufactured.  Theorem #15 states that when the FRs 
are not independent, the design must be modified. This sort of  
strong language might be interpreted as a call to avoid functional 
coupling at all costs.  The experimental results in this paper 
suggest that such an extreme interpretation of  Axiomatic Design 
should not be adopted.  When only two functional requirements 
are to be satisfied, the designer should be able to satisfy the 
functional requirements even if  the design is coupled.  The paper 
also suggests that, for 2X2 coupled systems, the added difficulty 
of  executing the design may be modest.  In some cases, modest 
increases in difficulty should be quantified and traded off  against 
other considerations before discarding a coupled alternative.  In 
some cases, the coupled alternative will have advantages that 
mitigate the disadvantage of  a more difficult parameter design 
process.  For example, there are some cases in which coupling 
provides an improved probability of  success due to the 
correlation induced among functional requirements [Frey et al., 
2000].  In other cases, coupled designs may have advantages in 
cost or physical simplicity.       

This investigation suggests the possibility of  an 
anthropocentric reinterpretation of  the Independence Axiom. 
Indeed, coupling should be avoided when practicable through 
careful system design, especially when the subsystem in question 
appears to be coupled across more than two variables.  In the 
opinion of  the authors, the need to avoid coupling is not self-
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evident and is not a general principle without counterexamples.  
Rather, the need to avoid coupling arises from practical necessity 
due to human cognitive limitations.  If  a design is to be 
implemented successfully, its human designers must be capable 
of  understanding the design despite their limited capacity to cope 
with functional coupling.  
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