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ABSTRACT 
In Axiomatic Design theory, it is strongly desired to eliminate off-
diagonal elements from a design matrix as the two design axioms 
imply an ideal design would have an uncoupled design matrix. For 
example, in a coupled design, eliminating the off-diagonal term(s) 
that cause the coupling is mandated by the independence axiom. 
For a decoupled design, eliminating an off-diagonal term is 
desirable as it tends to increase robustness and reduces 
complexity of  the design. While eliminating any off-diagonal 
element does benefit the design in a certain way to a certain 
degree, each off-diagonal element presents different value when 
eliminated. For example, a coupled design matrix with a unique 
structure may be decoupled by eliminating one critical off-
diagonal term while a trivial solution may require eliminating 
more than one off-diagonal terms. Even in a decoupled design, 
each of  the off-diagonal terms when eliminated yields a different 
FR-DP interaction structure that leads to a different implication 
in the context of  design iteration. This in turn is related to the 
reduction of  imaginary complexity for a design. The fact that 
eliminating an off-diagonal element among more than one off-
diagonal terms is not equally effective in improving a design raises 
the need for developing an optimal strategy for eliminating off-
diagonal element. The first step in developing such strategy is to 
quantitatively understand the value of  (or the lack there of) an 
off-diagonal element. This paper examines the effect of  removing 
an off-diagonal term to build a basis for an optimum decoupling 
strategy and presents a preliminary result for the methods to 
construct an optimal strategy. 
 

Keywords: Axiomatic Design, Design Matrix, Decoupling, 
Robustness, Design Iteration, Imaginary complexity 

 

1 INTRODUCTION 
When conceiving DPs to satisfy a set of  FRs, the central 
objective is to find a set of  DPs that satisfy the Independence 
Axiom and Information Axiom. The Independence Axiom 
demands that a design maintain the independence of  functional 

requirements. The implication of  the Independence Axiom is that 
a design matrix must follow certain structures to avoid coupling 
in the design. In other words, off-diagonal elements (a.k.a. 
coupling terms) of  a design matrix should be arranged to have 
either uncoupled or decoupled structure. In a 3x3 design matrix, 
for example, there exist a total of  six design matrix structures 
(after rearrangement) that always satisfy the Independence Axiom. 
All of  the uncoupled or decoupled 3x3 design matrices can be 
rearranged to have one of  the following structures: 
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Figure 1. Uncoupled or decoupled structures for 3x3 
design matrix 

 
Additional off-diagonal terms above the diagonal elements either 
change its structure to one of  the six acceptable structures or 
make it a coupled design matrix. When a design matrix is coupled, 
the off-diagonal terms that cause coupling must be eliminated.  
While the need to eliminate an off-diagonal element is evident by 
the Independence Axiom in case of  a coupled design, justifying 
an effort to eliminate an off-diagonal term in a decoupled design 
needs more careful argument. By definition, a decoupled design 
satisfy the Independence Axiom only if  the structure of  the 
design matrix is known and the sequence dictated by the matrix is 
properly followed. Thus, eliminating an off-diagonal term does 
not contribute to improving functional independence of  the 
design. Rather, the value of  eliminating an off-diagonal term is in 
increasing conformity to the Information Axiom and reducing 
the imaginary complexity of  the design.  
Existence of  an off-diagonal term is considered to compromise a 
design’s robustness, resulting in a lower probability of  success [1]. 
Two main logics behind this argument are 1) reduction in the size 
of  allowable tolerance, and 2) additive effect of  an off-diagonal 
term on FRs’ variation.  
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Figure 2. Allowable tolerance (hatched area) for an 

uncoupled design is larger than that of an equivalent 
decoupled design. (a) FR design range is mapped onto 
DP-space as a rectangle, thereby allowing the largest 

allowable tolerance; (b) a decoupled design matrix maps 
a rectangular FR design range to be a parallelepiped. 

Allowable tolerance, shown as a hatched rectangle in (b), 
is smaller than the area of the mapped-design range. 

 
Theorem 22 and 23 by Suh [1] present the reasoning along the 
allowable tolerance concept. This concept is best illustrated by a 
graphical means, shown in Figure 2 [2]. In a 2-FR design problem, 
design range for the FRs is represented by a rectangle on FR-
plane. The design range is always a rectangle since FRs are 
orthogonal to each other by definition. Assuming a linear design 
matrix, the rectangular design range can be mapped onto DP-
plane. A DP pair (DP1i, DP2i) inside this mapped-design range 
will yield an FR pair, (FR1i, FR2i), that falls within the design 
range. In that sense, it can be referred to as a design range for DP. 
Shape and size of  this mapped-design range, or DP design range 
is a function of  the design matrix. If  the design matrix is 
uncoupled, the mapped- design range also bears a rectangular 
shape with its area scaled by the values of  the diagonal terms of  
the design matrix. If  the matrix is decoupled, the mapped-range 
is a parallelepiped with one axis parallel to either DP1 or DP2 
axis. Figure 2(b) shows one of  such cases. In a decoupled case, a 
tolerance for DP1 – where the tolerance is defined as a range for 
DP within which any value for DP will deliver FR in its design 
range – is conditional upon a specific value of  DP2: the same 
value of  DP1 is within or outside of  the mapped-design range 
depending on DP2 value. Thus, a tolerance for DP1 cannot be 
assigned independent of  DP2. Allowable tolerance is defined in a 
DP-space to specify the regime where each DP’s tolerance can be 
assigned independent of  each other. Finding an unconditional 
tolerance regime is analogous to finding a rectangle that fits 
within the mapped-design range, shown as a hatched area in 

Figure 2. It can be easily shown that for the mapped-design 
ranges with same area – which in turn requires the determinant 
of  design matrix [A] and [B] be the same –, a rectangular 
mapped-design range gives the largest allowable tolerance. Since 
large tolerance for a given design range implies the design is 
highly robust, we can conclude that an uncoupled design matrix 
(or the lack of  off-diagonal term in general) improves the 
system’s robustness and thereby better conforming to the 
Information Axiom. 
The other part of  the benefit of  eliminating an off-diagonal term 
is found in reducing the imaginary complexity of  the design. 
Imaginary complexity in the Axiomatic Design theory is defined 
as an uncertainty in achieving FRs due to the lack of  knowledge 
on the structure of  the design matrix. In other words, it is the 
complexity caused by the ignorance of  the interaction structure 
between the FRs and DPs. If  these interactions are not properly 
managed, additional design iteration will occur, wasting valuable 
resource, and the design problem is perceived to be complex. 
Interactions between FRs and DPs are represented by a design 
matrix, DM. Diagonal terms are always non-zero by definition of  
FR-DP mapping. An off-diagonal term can be either zero or non-
zero. A non-zero off-diagonal term, DM(i,j), indicates that there 
is a secondary effect from DPj to FRi while DPj is intended to 
primarily target FRj. In the presence of  such interaction, design 
process must be conducted such that the interaction is properly 
taken into account. For example, in a 2FR-2DP design problem, 
if  there is a non-zero off-diagonal element as shown in Figure 3, 
designer(s) must proceed with the FR1-DP1 design task first and 
then FR2-DP2 design after observing the effect of  DP1 onto 
FR2. If  designer(s) is not aware of  the interaction and happens to 
start from FR2-DP2 design step, then there will be additional 
design step to complete. The additional design steps that could be 
avoided if  the interaction structure were known a priori is 
perceived as the problem’s complexity, which is defined as the 
imaginary complexity. The imaginary complexity concept is 
particularly applicable to a decoupled design because the 
decoupled design matrix dictates a (set of) unique sequence to be 
followed during the design process. 
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Figure 3. Design matrix represents design interaction 

structure and dictates a design process. (a) Decoupled 
design matrix (b) designing FR1-DP1 must precede FR2-

DP2 
 
While the benefit of  eliminating an off-diagonal term is evident 
by one or a combination of  the reasons explained above, it 
should be noted that each off-diagonal element presents different 
value when eliminated. Eliminating an off-diagonal element when 
there are more than one off-diagonal terms is not equally 
effective in improving a design. Removing an off-diagonal term 
takes effort and resource, and we certainly want those resources 
to be best spent. This raises the need for developing an optimal 
strategy for eliminating off-diagonal elements. The first step in 
developing such strategy is to quantitatively understand the value 
of  (or the lack there of) an off-diagonal element. This paper 
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examines the effect of  removing an off-diagonal term to build a 
basis for an optimum decoupling strategy, and presents a 
preliminary study on the methods to design such strategy. 
 

2 VALUE OF OFF-DIAGONAL ELEMENT IN A 
DESIGN MATRIX 

Within the Axiomatic Design framework, the effort to eliminate 
off-diagonal terms is justified, in principle, simply by referring to 
the Independence Axiom and Information Axiom. That is 
particularly true when the off-diagonal terms cause a coupling in 
the design. The reference to the axioms, however, provides only 
nonspecific, abstract justification that is indiscriminately applied 
to all off-diagonal elements. On the other hand, it is evident that 
each of  the off-diagonal terms presents different values when 
being removed. Given the differences, it is most likely that we 
must prioritize off-diagonal terms to be eliminated so that the 
effort can be most effectively spent. This section examines the 
value of  off-diagonal element in two contexts. The first is the 
different impact of  off-diagonal terms in decoupling a coupled 
design. Then, its effectiveness in reducing imaginary complexity is 
considered. 

2.1 ELIMINATING AN OFF-DIAGONAL TERM TO 
DECOUPLE A COUPLED DESIGN 

The Independence Axiom requires that a coupled design matrix 
be decoupled. This is achieved by modifying the current DP or 
adopting a new DP to ensure the troubling columns of  the design 
matrix are replaced to have a desired structure. Thus, ‘eliminating 
an off-diagonal term’ is not quite accurate description of  the 
decoupling activity. For the purpose of  discussion, though, we 
assume that eliminating any off-diagonal term is always possible, 
and simply focus on the existence or disappearance of  an off-
diagonal term.  
In decoupling a coupled design matrix, each off-diagonal element 
presents different value when eliminated. A coupled design 
matrix with certain structure may be decoupled by eliminating 
one critical off-diagonal term while a trivial solution may require 
eliminating more than one off-diagonal terms. Take, for example, 
the following coupled design matrix: 
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Figure 4. A 3x3, coupled design matrix 
 
There are four off-diagonal elements, DM(2,1), DM(3,1), 
DM(3,2), and DM(1,3) to choose one or some combination from 
to eliminate. It is evident that eliminating DM(1,3) decouples the 
design matrix. Thus eliminating one off-diagonal term is 
sufficient to decouple the matrix. It should be noted, however, 
that among the four options, DM(1,3) is the only solution that 
can decouple the design by itself. Eliminating DM(3,1), DM(2,1), 
or DM(3,2) does not break the coupled relationship in the design. 
If  DM(1,3) cannot be removed, decoupling requires eliminating 
the off-diagonal terms in either of  the following pair: (DM(2,1), 
DM(3,1)) or (DM(3,1), DM(3,2)). Thus, it can be argued that the 

value of  eliminating DM(1,3) is greater than that of  DM(2,1), 
DM(3,1), or DM(3,2). 
Understanding the different values of  off-diagonal term and 
thereby prioritizing the task of  eliminating them involves the 
following three questions. 

a. Is there a coupling in the design matrix? If  so, which 
off-diagonal terms constitute the coupling? 

b. How many off-diagonal terms at minimum must be 
eliminated to decouple? 

c. What are those off-diagonal terms? 
In this section, we present an answer to the first question, and the 
second and third questions are discussed in section 3.  
Existence of  coupling in a design matrix 

When the dimension of  a design matrix is small, less than 4, or a 
design matrix is very sparse, one can easily determine the 
existence of  coupling simply by visual inspection. The task 
becomes, however, quite challenging if  a design matrix has a 
dimension larger than 5 and is reasonably populated. For example, 
it is not readily recognizable which of  the following 5X5 matrices 
is coupled. 
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    design matrix (a)   design matrix (b) 

Figure 5. 5X5 design matrix: one on the left is a coupled 
matrix, and on the right is a decoupled. 

 
Design matrix represents a network of  interactions between a set 
of  FRs and DPs. Off-diagonal terms, DM(i,j) represent a ‘flow’ 
of  energy/material /information from DPi to FRj. If  we let vi to 
denote a design task DPi-FRi, then the two design matrices in 
Figure 5 have the following digraph representation. 
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(a) (b)  
Figure 6. Digraph representation of the two design 

matrices in Figure 5 
 
vi in these graphs correspond to the diagonal elements of  the 
deign matrix, and each of  the directed arcs denotes an off-
diagonal term. Now that a design matrix is represented in a 
digraph, many useful results from the graph theory can be readily 
applicable to the analysis of  a design matrix.  
With the digraph representation, the problem of  determining the 
existence of  a coupling becomes the problem of  testing the 
existence of  a cycle within the digraph. A cycle in a digraph is a 
path in which no vertex (and thus necessarily no edge) is repeated 
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except for the start and end vertex. For example, v1 – v2 – v4 – v1 
is a cycle. This cycle in the digraph indicates a coupling between 
FR1, FR2 and FR4. There is no cycle in the digraph (b), and the 
design matrix Figure 5(b) is thus a decoupled matrix. 
Given a digraph, one can construct an algorithm to find, if  any, a 
cycle in the graph. If  the dimension of  the problem is not too 
large, the following theorem [3][4] can be directly used instead of  
an algorithmic approach. 

Theorem 1: Let A be a adjacency matrix of  a size m×m. Then, 
An(i,j) is the number of  walks of  length n from vi to vj.  

Adjacency matrix of  a digraph with m vertices is a m×m matrix 
where A(i,j) is the number of  arcs from vi to vj. Adjacency matrix, 
A, and a design matrix, DM, has the following relationship: 

A = DMT – I    (1) 

where DMT is a transpose of  DM and I is m×m identify matrix. 
Theorem 1 says An(i,i) is the number of  walks of  length n for vi. 
For m-vertex digraph, the longest cycle would be at the length of  
m, i.e. visit all vertices once and come back to the origin vertex. 
Thus, if  a design matrix of  size m×m has a coupling, there exist 
non-zero diagonal terms in any of  A, A2, A3, …, Am.. Using the 
design matrix (a) and (b) from Figure 6, Table 1 shows A1 
through A5 for the two design matrices.  

0 1 0 0 1 0 1 0 2 0 2 0 0 1 0 1 2 0 0 2 0 3 0 4 1
0 0 0 1 0 1 0 0 0 0 0 1 0 0 1 0 1 0 2 0 2 0 0 1 0

 (a) 0 0 0 0 1 0 1 0 1 0 1 0 0 1 0 1 1 0 0 1 0 2 0 2 1
1 0 0 0 0 0 1 0 0 1 0 1 0 2 0 2 0 0 1 0 1 2 0 0 2
0 1 0 1 0 1 0 0 1 0 1 1 0 0 1 0 2 0 2 1 2 1 0 3 0

0 1 0 0 1 0 1 1 2 0 0 0 3 1 0 0 0 1 0 0 0 0 0 0 0
0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 (b) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 2 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

A2A A3 A4 A5

 
Table 1. Adjacency matrix up to 5th order to test the 

existence of a cycle 
 
Table 1 shows that A3 and A4 of  the design matrix (a) have non-
zero diagonal elements whereas all the diagonal elements in A1 
through A5 of  design matrix (b) are zero, confirming that design 
matrix (a) is coupled and (b) is not.  
Another piece of  useful information we can infer from Table 1 is 
the total number of  cycles in the digraph. It is easy to show that 
the sum of  diagonal elements of  Ak divided by k is the total 
number of  closed walks of  length k in the digraph. In the 
example (a), all the closed walks are cycles. Thus, for (a), there are 
two cycles of  length 3 – (2+1+2+1)/2 – and one cycle of  length 
4, resulting in the total of  three cycles. This is shown in Figure 7.  
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Figure 7. Two cycles of length 3 and one cycle of length 4 
 

By visual inspection, it is easy to see that removing arc v4v1 
eliminates all three cycles while the other arcs eliminates only one 
or two cycles that they participate. Recall that each arc in a 
digraph corresponds to an off-diagonal element in the design 
matrix, then eliminating the off-diagonal term (1,4) of  the design 
matrix (a) completely decouples the design matrix. 
Knowing the existence and the total number of  coupling in a 
design matrix is the first step of  building a complete optimal 
decoupling strategy. The question of  finding the minimum set of  
off-diagonal elements will be discussed in section 3. 

2.2 ELIMINATING AN OFF-DIAGONAL TERM TO SIMPLIFY 
THE INTERACTION STRUCTURE 

The other aspect of  the value an off-diagonal term is the 
reduction of  imaginary complexity in a system. Imaginary 
complexity in Axiomatic Design theory is defined as the 
uncertainty in achieving FRs due to the lack of  knowledge about 
the interactions between FRs and DPs. Interactions between FRs 
and DPs are represented by a design matrix. In the presence of  
such interaction, design process must be conducted such that the 
interaction is properly taken into account. Otherwise, it is likely 
that all or part of  the design tasks need to be iterated, increasing 
uncertainty in satisfying FRs. We begin this section with a simple 
example to illustrate the concept of  imaginary complexity. Take a 
full lower triangular matrix from Figure 1 (third matrix in the 
second row). While removing the off-diagonal term DM(2,1) 
uncouples FR1-FR2 and results in a ‘simpler’ interaction structure, 
removing DM(3,1) from the matrix does not effectively change 
the interaction structure as the design matrix remains fully 
decoupled. 
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Table 2. Off-diagonal elements have different impact on 
design improvement when eliminated from the design 
matrix: (a) flow diagram for a fully-lower triangular 3x3 
design matrix (b) when DM(2,1) is removed, FR1 and 
FR2 become uncoupled (c) when DM(3,1) is removed, 
the fully-decoupled relationship between FR1, FR2 and 
FR3 remains unchanged. z, the number of acceptable 

sequences and CI, imaginary complexity are also shown. 
 
A flow chart, shown in Table 2, graphically illustrates the 
different impact DM(2,1) and DM(3,1) makes when they are 
removed. A square box in the figure represents a design task 
where FRi is achieved by DPi. An arrow between the boxes 
indicates the directed interaction/influence from one design task 
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to another. The arrow from [FR1] to [FR2] is a visual 
representation of  the design matrix element, DM(2,1). It can be 
argued, from the design iteration perspective, that eliminating 
DM(2,1) is a better option than DM(3,1) assuming both require 
same resource. The impact of  an off-diagonal term can be 
quantified by using the definition of  the imaginary complexity, CI 
[1][5].  
 

CI = - log2 (z/m!)     (2) 
 
z is the number of  acceptable sequences in carrying out m design 
tasks, and m! is the total number of  sequences for m×m design 
problem. Imaginary complexity decreases as z increases, and z 
increases as off-diagonal elements are eliminated. Obviously, the 
value of  z is determined by the structure of  design matrix as we 
saw from Table 2. In order to construct any strategy regarding 
this aspect of  design matrix, we must first clearly understand the 
relationship between z and off-diagonal terms. z is m! for an 
uncoupled design matrix as there is no particular sequence to be 
followed. On the other hand, z is zero for a coupled design. Only 
for a decoupled design, z is non-trivial and takes a value between 
0 and m!. Thus, we focus on a decoupled design case in the 
following discussion. 
Determining z of  a decoupled m×m design matrix  

z is the number of  acceptable sequence in serially executing 
design tasks. An acceptable sequence is a sequence that does not 
incur an unnecessary iteration of  design tasks. In order to avoid 
such iteration, design tasks should be sequenced to conform to all 
the precedence relationships. These precedence relationships are 
indicated by off-diagonal terms in a design matrix. An off-
diagonal term DM(i,j) represents the precedence relationship:  
[FRj]> [FRi], i.e. FRj must be satisfied first to FRi. Finding z is to 
find a set of  sequences that preserve all the precedence 
relationships. 
It is more convenient to use the adjacency matrix notation, and 
for the following discussion, we use the adjacency matrix in place 
of  a design matrix. For a adjacency matrix of  m×m with one off-
diagonal term A(i,j), half  of  the total m! sequences satisfy the 
precedence condition and the other half  do not. Thus, m!/2 is 
the number of  acceptable sequences. Let this set of  sequences be 
Si,j.  

{ }j task tofirst  comes i task design :m length of sequence designS ji, =  

Si,j is defined for any off-diagonal element, and its size is always 
m!/2. It is straightforward to construct Si,j by permutation [6]. A 
set of  acceptable sequences for a design matrix with multiple off-
diagonal terms, A(p,q), A(u,v), … is obtained by  

So = Sp,q ∩ Su,v ∩ …   (3) 

Then, the size of  So is z. If  So =  ∅, then the matrix is coupled.  
Although constructing Si,j and determining So is a straightforward 
process, it is not computationally efficient as m becomes larger: 
Si,j has m!/2 members and there are maximum of  m(m-1)/2 Si,j to 
conduct an intersection operation. Equation (4) can help reduce 
the number of  computation. 

 Si,j;j,k = Si,j ∩ Sj,k    ⊂   Si,k   (4) 

It follows from the fact that the precedence relationship {i>j} ∧ 
{j>k} implies {i>k}. In other words, given {i>j} and {j>k},  
{i>k} is redundant. It is clear that equation (4) can be extended 
to longer chain of  precedence relationships and thus can be 
generalized: 

 Si,i+1;i+1,i+2;…;i+m,i+m+1 ⊂ Si+j,i+k  (5) 
 m ≥ 1  

0 ≤ j ≤ m 
j+1 ≤ k ≤ m+1 

Equation (5) suggests that in computing equation (3), one can 
reduce the computational steps by first finding the most 
expanded chains of  precedence relationships and carry out 
equation (3) for only those that are included in the chains. 
Alternatively, we can construct a set of  acceptable sequences by 
enumerating all the sequences while continuously subjecting them 
to the precedence constraints. This process is illustrated with the 
following 5×5 adjacency matrix. 
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Column 2 and 4 are zero-columns, indicating that design task 2 
and 4 will be the first (initiating) task of  all the sequences. On the 
other hand, row 3 and 5 are all zeros, and they will be the last 
(terminating) task of  any sequence. There are six precedence 
constraints in this matrix: A(4,1), A(1,3), A(2,3), A(4,3), A(1,5), 
A(2,5). Among the six precedence constraints, we see that A(4,3) 
is redundant by equation (4): A(4,3) is implied in A(4,1)-A(1,3). 
These constraints are translated into three rules:  

• Rule 1 – [FR1] must follow [FR4] 
• Rule 2 – [FR3] must follow [FR1], [FR2] and [FR4] 
• Rule 3 – [FR5] must follow [FR1] and [FR2] 

Suppose we begin a search by choosing [FR2] as the initiating task. 
Then, we examine which of  the remaining four tasks can be 
placed after [FR2]. [FR1] violates rule 1, [FR3] violates rule 2, and 
[FR5] violates rule 3. [FR4] does not have a rule associated with it, 
and thus is a legitimate task to be placed after [FR2]. After [FR4], 
[FR1] is the only option as placing [FR3] or [FR5] violates rule 2 
and 3 respectively. Repeating this process, a complete tree for 
acceptable sequence is drawn to show z = 6 for this design matrix. 
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Figure 8. Acceptable sequence tree 
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3 OPTIMAL STRATEGY IN ELIMINATING OFF-
DIAGONAL ELEMENTS 

Section 2 presented groundwork on quantitative understanding 
of  an off-diagonal element in two contexts: coupling and design 
iteration. Indeed, the works presented in section 2 can be directly 
used to search for an optimal set of  off-diagonal terms to 
eliminate, in a brute force fashion. However, the brute force 
approach quickly becomes impractical as the size of  a matrix 
becomes large and the matrix is reasonably populated (not sparse). 
Thus, it will be desirable to design a more efficient algorithm or 
heuristics to find an optimal strategy in choosing which off-
diagonal elements to eliminate. This section describes the 
preliminary attempt to design an optimal decoupling strategy. 

3.1 MINIMUM SET OF OFF-DIAGONAL TERMS THAT 
ELIMINATE COUPLING 

When eliminating off-diagonal terms to decouple a design matrix, 
a trivial solution in selecting the target off-diagonal terms is to 
eliminate all of  the off-diagonal terms above (or below) the 
diagonal to make the design matrix an apparent triangular matrix. 
In many cases, however, we can still decouple the matrix by 
eliminating smaller number of  off-diagonal terms than the trivial 
solution. With an assumption that the number of  off-diagonal 
terms to eliminate is proportional to the required engineering 
resource, a best solution is the one that requires minimum 
number of  off-diagonal terms be eliminated. We call such best 
solution an optimal decoupling strategy. Before we discuss an 
optimal decoupling strategy, a few concepts from graph theory 
need to be introduced. First, we introduce the incidence matrix, B, 
and the cycle matrix, C.  
The incidence matrix, B for a digraph with m vertices and n arcs 
– equivalent to m FR-DP pairs and n off-diagonal terms – is an 
m×n matrix where B(i,j) = 1 if  arc j is directed away from a 
vertex vi, B(i,j) = -1 if  arc j is directed towards vertex vi, and B(i,j) 
= 0 otherwise. The cycle matrix, C of  a digraph is a matrix where 
C(i,j) = 1 if  cycle Zi of  the digraph contains arc j directed in the 
same way as the orientation of  Zi, C(i,j) = -1 if  Zi contains arc j 
directed in the opposite way to the orientation of  Zi, and C(i,j) = 
0 otherwise [3][4].  
As an example, Table 3 shows the adjacency matrix, A, the 
incidence matrix, B, and the cycle matrix, C, for a digraph shown 
in Figure 9. B can be constructed directly from A once the arcs 
are labeled. Each digraph has a unique A and B to describe its 
structure. Obtaining C is not straightforward because we 
somehow need to identify all the cycles in the digraph. 
Fortunately, with the help of  some of  the findings in the graph 
theory, we can obtain C through a few intermediate steps from B 
[3]: 
 

- Eliminate any one row from B to obtain Br 
- Identify a directed spanning tree in the digraph 
- Partition Br into Bc and Bt where Bt is a partition 

of  Br by including only those arcs in the spanning 
tree and the rest of  Br is Bc 

- Ct = - (Bt-1Bc)T 
- Cf = [Iµ : Ct] where Iµ is an identity matrix of  

dimension µ = e – m + 1 where e is the number 
of  arcs and m is the number of  vertices 

- Construct C by taking linear combinations of  Cf 
 
Thus, given B (or A, equivalently), we can construct C. In the 
example, Br is obtained by removing the fifth row (v5 row). a6, a7, 
a8 and a9 can be chosen as the four arcs of  a spanning tree, and 
then Bt is the 4×4 matrix between v1,v2,v3,v4 and a6,a7,a8,a9. Bc 
is the rest of  Br. µ is (9-5+1) = 5. Final outcome1 of  C is 7×9 
matrix as shown in Table 3. 
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Figure 9. Design matrix and its digraph representation 
 

a1 a2 a3 a4 a5 a6 a7 a8 a9 a1 a2 a3 a4 a5 a6 a7 a8 a9

0 1 0 0 1 v1 -1 1 0 0 0 0 0 1 0 z1 1 0 0 0 0 0 1 1 0
0 0 1 1 0 v2 0 -1 -1 1 0 1 0 0 0 z2 0 0 0 0 1 0 1 0 1
0 0 0 0 1 v3 0 0 0 -1 -1 0 0 0 1 z3 1 1 0 0 0 1 0 0 0
1 0 1 0 0 v4 1 0 0 0 1 -1 -1 0 0 z4 1 0 1 0 0 1 0 1 0
0 1 0 1 0 v5 0 0 1 0 0 0 1 -1 -1 z5 0 0 1 1 0 0 0 0 1

z6 1 1 0 1 0 0 1 0 1
z7 0 0 1 0 1 1 0 0 1

A B C

 
Table 3. Adjacency matrix, Incidence matrix, and Cycle 

matrix 
 

The cycle matrix C shown in Table 3 gives the complete picture 
of  the coupling structure. There exist seven cycles in the digraph, 
and for each of  the seven cycles, it tells you which arcs 
constitutes the cycle. In the design matrix terminology, it is 
equivalent to knowing the couplings present in the design matrix 
and also knowing exactly which off-diagonal terms constitute 
each of  the couplings. Now that C is known, the task of  finding 
optimal set of  off-diagonal terms to decouple the design matrix is 
to find a minimum set of  columns in C that, when summed, do 
not contain any zero entry. No zero entry in a (combination of) 
column indicates that the particular arc (or combination of  arcs) 
is present in all the cycles, and thus removing it will destroy all the 
cycles.  The minimum set of  such columns can be easily done by 
performing exhaustive search for combinations of  different 
columns from C starting from single column, two-columns, etc. 
to find the first set of  columns with non-zero entries. Once the 
set is found, then the off-diagonal terms that correspond to the 
columns are the optimal set of  off-diagonal terms to eliminate 
coupling. In the cycle matrix C shown in Table 3, the summation 
of  the column a1 and column a9 makes a column without any 
zero entry. Therefore, minimum number of  off-diagonal terms to 
remove to eliminate coupling from the design matrix is two, and 
they are DM(1,4) and DM(5,3).  
To summarize, the overall process is as following: 
                                                           

1 C, constructed from Cf, contains negative entries for some Zi, indicating 
that some of  the arcs in cycle Zi are in the opposite direction. These cycles are 
called semi-cycles since they are not cycles. For convenience, we do not show those 
semi-cycles in C. 



“Understanding the Value of Eliminating an Off-Diagonal Term in a Design Matrix” 
4th International Conference on Axiomatic Design 

Firenze  – June 13-16, 2006 

Copyright © 2006 by ICAD2006  Page: 7/8 

- Construct the adjacency matrix A to determine the 
existence of  coupling 

- If  coupled, construct B from A 
- Identify a directed spanning tree 
- Given B(and thus Br) and the spanning tree, 

construct C 
- Search  the combinations of  the columns to find 

the first set of  columns with non-zero entries 
when summed up 

- DM(i,j) that correspond to the columns found are 
the minimum set of  off-diagonal term that 
decouples the design matrix 

 
By applying the above procedures, we can obtain the minimum 
set of  off-diagonal terms to eliminate from a coupled design 
matrix to make it decoupled. 

3.2 OPTIMAL SET OF OFF-DIAGONAL TERMS TO 
SIMPLIFY THE DESIGN INTERACTION STRUCTURE 

We saw, in an example in Table 2, that eliminating the same 
number of  off-diagonal terms can result in different amount of  
CI reduction, depending on their structural context. In section 2.2, 
we presented the algorithms to compute z, the number of  
acceptable sequences for a decoupled design. In this section, we 
discuss a heuristic approach to determine an optimal set of  off-
diagonal terms to increase z. An optimal set here is defined for a 
given number of, say k, off-diagonal terms, and it is a set of  k off-
diagonal terms that increases z most.  
Recall that three rules were identified from the adjacency matrix 
in equation (6). Three non-zero columns, column 1, 3, and 5, of  
the adjacency matrix become the three rules. Note that in Rule 2, 
A(4,3) is redundant by A(4,1) and A(1,3). Each of  these rules is 
used when constructing an enumerating tree (Figure 10).  
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Figure 10. Example from section 2.2. Rules are derived 
from the adjacency matrix, and the enumeration tree is 

constructed. The tree shows z=6. 
 
Absence of  a precedence relationship for [FRi] adds certain 
degrees of  freedom in choosing an acceptable [FRi] at a 
particular node in the tree, and results in a branch in the tree. The 
higher upstream exist the branches of  a tree, the larger the 
number of  leaf  level branches will be. Giving additional degrees 
of  freedom at the most upstream of  the enumeration tree is 
equivalent to eliminating a rule for [FRi] thereby making [FRi]’s 
position completely flexible. For example, removing A(4,1) 
eliminates Rule 1 completely and thus gives a complete degree of  

freedom for [FR1]. As a result, it leads to additional branch at the 
first node of  the tree. On the other hand, removing A(1,3) is not 
as effective as A(4,1). Although removing A(1,3) relaxes Rule 2, 
there still remains the precedence relationship for [FR3]. 
Consequently [FR3] cannot appear before [FR2] and [FR4], which 
means it can only appear at the third or lower branching node. 
Therefore, in removing a given number of  off-diagonal terms, it 
is most effective to choose the ones that belong to the shortest 
rules. It is least effective to remove one from the longest rules. It 
is non-effective if  a redundant off-diagonal term is removed. An 
equivalent statement in the matrix form is that the most effective 
set of  off-diagonal terms to remove is a set of  off-diagonal terms 
that renders the maximum number of  columns to be a zero 
column. Figure 11 shows the effect of  eliminating one off-
diagonal term from the example matrix, A. Eliminating an off-
diagonal term from the column with fewer non-zero entries is 
more effective in increasing z.  
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Figure 11. Removing one off-diagonal term from the 

matrix. Eliminating an off-diagonal term from the column 
with fewer non-zero entries is more effective in increasing 

z. z for (a) = 14, (b) = 9, and (c) = 8.  
 
When applying this heuristics, care must be given to the 
redundant precedence relationship. For example, the precedence 
requirement between [FR3] and [FR4], A43, is redundant when 
both A41 and A13 are non-zero. However, once either of  A41 or 
A13 becomes zero, A43 is not redundant any more. In other 
words, redundancy of  a precedence requirement may change, and 
thus the redundancy of  Aij must be continuously tested whenever 
a change is made to the matrix A. 
 

4 CONCLUSIONS 
Eliminating an off-diagonal term from a design matrix brings 
value in a few different contexts. For a coupled design, it can 
decouple the design matrix. For a decoupled design, it will 
increase the flexibility of  design interaction structure and thereby 
reducing the imaginary complexity. While eliminating an off-
diagonal term is always preferred in the Axiomatic Design 
framework, it must be justified in the context of  the cost-benefit 
trade. Assuming the cost is proportional to the number of  off-
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diagonal terms to eliminate, this paper presented methods to 
identify a minimum set of  off-diagonal terms that achieve the 
two objectives – decoupling and imaginary complexity. For the 
decoupling problem, the cycle matrix, C, provides an effective 
means to identify the optimal set of  off-diagonal terms. For the 
imaginary complexity problem, we presented a heuristic approach 
to select the optimal set. While the method we presented for the 
coupling problem guarantees the optimal solution, the heuristic 
method for the second problem needs further validation. 
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