
“Application of design process in mechanics
to software design”

4th International Conference on Axiomatic Design
Firenze – June 13-16, 2006

Copyright ©2006 by ICAD2006 Page: 1/7

ABSTRACT

Design methodology has independently developed in each
industry for practical production. Each industry carries out design
upon common concepts of function, mechanism, structure and
constraint separately from other industries. Our studies have
revealed that original concepts in one field can map to their
counterpart concepts. Our finding suggests that not only design
processes established in one field apply to others, but also
different industries can share knowledge of design and failure.
This paper reports how a design process in mechanics applies to
software design by first, laying out the design processes in
mechanics and their essential concepts, then showing how each
concept in mechanical design maps to its counterpart in software
design through the common super-ordinate concept. We
conclude the paper with a discussion on the effectiveness and
interoperability of design and failure knowledge.

1 INTRODUCTION
Fujita has participated in the development of commercial
software products and found that software designers have
different thinking processes respectively. It has troubled him that
they cannot sufficiently understand each idea and thought by
sharing concepts in software design. On the other hand,
Hatamura and Yoneyama have clarified basic thinking processes
and concepts in mechanical design [Yoneyama, 1993], and
[Hatamura, 1999]. They have revealed that designers can be
creative if they are conscious of sharing the thinking processes
and concepts in design. Fujita has considered counterparts of the
mechanical thinking processes and concepts in software. Trough
our discussion, it has become clear that there exist not only the
thinking processes and concepts in mechanical design but also
counterparts in software design.

Design process in mechanics can be divided into two parts,
which are the thinking process and the externalizing process. The
thinking process is an essential and creative work. The
externalizing process is a work to organize the result of the
thinking process as drawings and documents. A mechanical
designer always analyzes an object to design, decides the design
solutions and specifies his thoughts through a set of concepts in

mechanics. We assume that the process is the same even in the
different industry. If the set of concepts meaningfully
corresponds to the other set in the different industry, then the
design in the different industry will proceed according to the
original thinking process.
We have found a relationship between the set of concepts in
mechanical design and that in software design through the
common super-ordinate concepts in consideration of some cases
of design and failure. In this paper, we will show the basis of the
thinking process in mechanics at first, and then abstract a set of
concepts in it. Moreover, we will consider and select the
counterparts in software design and finally, design software by
using the thinking process with the set of concepts in mechanical
design replaced by the one in software design.

2 APPLICATION OF DESIGN PROCESS IN
MECHANICS TO SOFTWARE DESIGN

2.1 THINKING PROCESS AND A SET OF
CONCEPTS IN MECHANICS

Figure 1 shows a basis of thinking process and externalizing
process in mechanics [Yoneyama, 1993], [Hatamura, 1999], and
[Hatamura, 2006].

（1） Make a plan for designing a machine according to the

motivation and the purpose.
（2） Clarify the quantitative performance or the specification

for the purpose.
（3） Analyze the functions and the constituents for the

machine to possess.
（4） Consider which mechanisms should be adopted to satisfy

the necessary functions. Show the whole mechanism by
using a mechanism line diagram. A force flow diagram is
also very useful to understand how to transfer the force
within the machine. The optimum mechanism among the
various concepts should be selected to satisfy the various
constraints, i.e. not decide it on one idea only.

APPLICATION OF DESIGN PROCESS IN MECHANICS

TO SOFTWARE DESIGN

Kazuhiko Fujita
k.fujita@jp.fujitsu.com

Fujitsu Limited
140 Miyamoto, Numazu-shi
 Shizuoka 410-0396, Japan

Takeshi Yoneyama
yoneyama@t.kanazawa-

u.ac.jp
University of Kanazawa

Kakuma-machi,
 Kanazawa 920-1192, Japan

Yotaro Hatamura
Hatamura@sozogaku.com

Hatamura Institute for the Advancement of
Technology

Tokyo Opera City Tower 52F 3-20-2,
Nishishinjuku, Shinjuku-ku, Tokyo 163-1452, Japan

“Application of design process in mechanics
to software design”

4th International Conference on Axiomatic Design
Firenze – June 13-16, 2006

Copyright ©2006 by ICAD2006 Page: 2/7

space
weight
working methods
assembly/disassembly
operability
safety
durability
standard/regulations

(1)set the purpose
of an object to

design and plan it

(2) specify main
performance

and specifications

(3) analyze the
functions

and constituents

(4) construct
the mechanisms

(5) decide
the structure

(7) decide
the forms

(8) decide
the demensions

(6) consider
the constrains

consider
the strengh

mechanism line diagram
force flow diagram

expand the mechanisms
synthesize the mechanisms

decide the materials
decide the working methods

specifications

planning document

design figures

scheme drawing

(9)design documents

thinking process externalizing process

space
weight
working methods
assembly/disassembly
operability
safety
durability
standard/regulations

(1)set the purpose
of an object to

design and plan it

(2) specify main
performance

and specifications

(3) analyze the
functions

and constituents

(4) construct
the mechanisms

(5) decide
the structure

(7) decide
the forms

(8) decide
the demensions

(6) consider
the constrains

consider
the strengh

mechanism line diagram
force flow diagram

expand the mechanisms
synthesize the mechanisms

decide the materials
decide the working methods

specifications

planning document

design figures

scheme drawing

(9)design documents

thinking process externalizing process

Figure 1. A basis of thinking process and externalizing process in mechanics

（5） Make the structure by expanding the basic mechanism

line diagram and combining the various mechanisms. And
specify the drawing while zigzagging among the
constraints. Then, this makes the design figure grow
upon and the ideas synthesized.

（6） Refine the mechanisms and the structures to satisfy the
various constraints. Some of constraints are strength,
stiffness, space, weight, workability, working method,
assembly/disassembly, operability, durability, safeness,
and cost.

（7） Decide the forms according to the mechanisms and the
structures to satisfy the necessary functions.

（8） Decide the dimensions with the forms. The dimensions
of the main parts can be decided by the condition of the
main function in the specification. And then decide the
dimensions of surroundings in consideration of the
constraints about the space.

（9） Decide the materials and the working methods of each
part to satisfy the constraints of strength, stiffness,
weight and durability. Make scheme drawings with all
decisions. And write the design documents to explain the
thinking history of the decisions.

We have picked up the concepts such as performance,

specification, function, mechanism, structure, constraint, force,

form, dimension, material, space, weight, strength, stiffness,
working and assembly/ disassembly.

2.2 COUNTERPART CONCEPTS IN SOFTWARE
DESIGN

The highly abstract concepts are common between mechanical
design and software design, such as performance, specification,
function, mechanism, structure and constraint. In this section, we
consider the particular concepts in mechanics.

Force is the most important and dominant concept in
mechanics. If it is defined as an essential substance flowing
within an object to design, then through the super-ordinate
concept, data is the counterpart concept in software design
because any kind of software can be modeled by input data,
processing and output data. Data is always flowing in software.

Form is similarly defined as an external appearance of an
object to design. It corresponds to interface in software. Many
software designers think interfaces as the external appearances of
program modules. Interface seems to be a form of software at
the point of fitness of joint, assemblability, easy working and
usability.

Dimension is defined as something to decide the characteristics
of an object to design. It corresponds to algorithm of a module.
In mechanical design, we can make a machine after all of the
form and the dimension regarding entire parts have been decided.
In software design, we can make software regarding entire

“Application of design process in mechanics
to software design”

4th International Conference on Axiomatic Design
Firenze – June 13-16, 2006

Copyright © 2006 by ICAD2006 Page: 3/7

program modules after all of the interface and the algorithm have
been decided.

Weight is defined as work per unit to move or operate an
object to design. It corresponds to work per unit to execute a
program module in software design. This is called time
complexity, which is the number of instructions executed by CPU
(Central Processing Unit). Software designers always use the
phrase that this processing is light weight or heavy weight.

Space is defined as space for an object to occupy. It
corresponds to space complexity. In software design, it means
memory space for program modules to use, that is, the number
of variables or the number of bytes in main memory.

Material is defined as something what an object to design is
made from. It corresponds to programming language. It is also
fitting at the point of workability. The selection of material is
similar to the selection of programming language. This idea is
based on strength and stiffness of material.

We should show that there also exist the counterparts of stress
and strain derived from force at first. Mechanical designers are
always thinking about the relationship between stress and strain in
order to consider the deformation and the fracture of an object
to design. That can be shown by a stress-strain diagram. We can
explain the elastic region, the plastic region and the rupture by
using it.

Stress is defined as an internal state of an object to design. It
corresponds to a state of a module or a software system. Strain is
also defined as the behavior caused in the state. It corresponds to
the activity in the state, for example, to display a message to a
console if a fault occurs, to calculate something when data is
prepared or so on. The change of stress corresponds to a
transition of a state. Those can be explained by a state diagram in
software design.

Furthermore, under this idea, elastic strain is defined as the
activity in a recoverable state, plastic strain is similarly defined as
the activity in an unrecoverable state and rupture is defined as the
activity in a state of a failure. In software design, it can be
thought that the activity in a recoverable state and in an
unrecoverable state is classified into the activity in an expected
state, which has been decided previously, and the activity in a
state of a failure is classified into the activity in an unexpected
state, which has not been decided previously because the designer
has not considered or omitted the state. The activity in the
expected state is divided to two kinds of processing, one is a
normal processing and two is an exception handling.

Figure 2 shows a state diagram for the program to sum the
sequence of numeric data. Let us suppose that in the sequence of
data, the numeric data is not only included but also the different
kinds of data such as alphabet, sign or whitespace are included.
Now, when the program is started, it goes into the state of
waiting for input data. If numeric data is coming in the state, the
state of the program transits to the state of normal input. At the
time, the sum is calculated as the activity and then the program
returns to the state of waiting for input data. If alphabet, sign or
white space is coming, the state transits to the state of input error
and an error message may be output as the activity, which is an
exception handling. If the data is white space, then the program
returns to the state of waiting for input data and otherwise the

state transits to the state of fatal error. If end of data is coming
in the state of waiting for input, the program is ended.

Start waiting
for data

input
error

normal
input failure

End

numeric
data

alphabet,
sign, space

end of data

normal sum

overflow

failure

control character

recoverable state

state of failure

space

alphabet,
sign

fatal
error

unrecoverable state
expected state

unexpected state
(cannot be drawn)

Start waiting
for data

input
error

normal
input failure

End

numeric
data

alphabet,
sign, space

end of data

normal sum

overflow

failure

control character

recoverable state

state of failure

space

alphabet,
sign

fatal
error

unrecoverable state
expected state

unexpected state
(cannot be drawn)

 Figure 2. A state diagram of the program to sum the
sequence of numeric data

Let us imagine the case that a control character data is coming.
The input data function which is the activity in the state of
waiting for input data will not work well, and then the program
may be in the state of a failure. Similarly let us imagine the case
that the calculated result overflows in the state of normal data.
The program will be in the state of a failure even in case of
numeric data.

In Figure 2, it is shown that there exist three kinds of states;
one is a recoverable state, i.e. the state of waiting for input data,
the state of normal input and the state of input error, two is an
unrecoverable state, i.e. the state of fatal error, three is the state
of a failure, which cannot be drawn in the state diagram actually
because the designer has omitted the state. In the above
considerations, we have determined the previous correspondence.

Strength is defined as a limit state within an object to design. It
corresponds to the resiliency of the system, especially when
under heavy load or when confronted with invalid input. It can be
realized by proper exception handling. Software should have the
processing for normal input data, that for invalid input data and
that for error result. It also should work even if many exceptions
occur due to shortage of system resources such as the memory
area, the disk space or so on. The cover ratio of exception
handling in all states decides the strength of software, i.e. the
resiliency. We have already mentioned exception handling above
by using Figure 2.

Stiffness is defined as adaptability of an object to design to
environmental changes. It corresponds to system stability in
software design. Let us consider the changes of the number of
requests in an online system as environmental changes and set the
average of the response time as an index of adaptability. The
system with higher responsibility cannot drive both the grater
throughput and the stable response time. However, if the
constraint of the responsibility can be loosened, the system with
the grater throughput and the stable response time can be

“Application of design process in mechanics
to software design”

4th International Conference on Axiomatic Design
Firenze – June 13-16, 2006

Copyright © 2006 by ICAD2006 Page: 4/7

designed. Namely, even if the changes of the number of requests
in the system are grater, the response time is stable, i.e. high
adaptability. This is very similar to the concept of stiffness.

Table 1. Correspondence of concepts
Concept in
mechanics

Super-ordinate concept Concept in
software

Performance Common Performance
Specification Common Specification
Function Common Function
Mechanism Common Mechanism
Structure Common Structure
Constraint Common Constraint
Force Essential substance flow within an object Data
Form External appearance of an object Interface
Dimension Something to decide the characteristics of

an object
Algorithm of
a module

Weight Work per unit to move or operate an
object

Time
complexity

Space Space for an object to occupy Space
complexity

Material Something what an object is made from Language
Stress Internal state of an object State
Strain Behavior caused by internal state of an

object
Activity

Strength Limit state within an object System
resiliency

Stiffness Adaptability of an object to
environmental changes

System
stability

Working The way to make an object Programming
Assembly/
Disassembly

Composition/ Decomposition of objects Linkage,
Package

Working is defined as the way to make an object to design. It

corresponds to programming. There exist many working methods
by using various kinds of machines in mechanics such as a
metalworking lathe or a milling machine or so on, and also many
programming methods by using various techniques in software
such as link, sort, queue, stack, lock or so on.

Assembly and disassembly are defined as composition and
decomposition of objects. Assembly corresponds to linkage or
package of program modules, or integration of software
components. The reusability of software modules is always
considered, however, the decomposition is not considered usually
because they are not joined physically.

The correspondence of concepts in the above consideration is
shown by Table1.

2.3 EXAMPLE OF APPLYING MECHANICAL
DESIGN PROCESS TO SOFTWARE DESIGN
PROCESS

Figure 3 shows the thinking process replaced by the set of
concepts in software design according to Table 1. Let us design a
software system according to the flowchart. Some values included
in this plan are not actually important because the purpose is to
verify the thinking process.

The step (1) is to decide the purpose and the plan about
designing software. We have planned an online calculator system
on which thousands of people can calculate the sum of two
numbers simultaneously. Therefore, the system has thousands of

terminals. The number of sever machines is just one. Let us
suppose the OS (Operating System) is selected properly. We
would also like to reduce the cost as low as possible.

(1)set the purpose
of an object to

design and plan it

(2) specify main
performance

and specifications

(3) analyze
the functions

and constituents

(4) construct
the mechanisms

(5) decide
the structure

(7) decide
the interfaces

(8) decide
the algorithm

(6) consider
the constraints

consider
the limit

state

mechanism line diagram
data flow diagram

expand the mechanisms
synthesize the mechanisms

decide the programming language
decide the programming method

space complexity
time complexity
programming methods
package of modules
operability
security
durability
standard/regulations

(1)set the purpose
of an object to

design and plan it

(2) specify main
performance

and specifications

(3) analyze
the functions

and constituents

(4) construct
the mechanisms

(5) decide
the structure

(7) decide
the interfaces

(8) decide
the algorithm

(6) consider
the constraints

consider
the limit

state

mechanism line diagram
data flow diagram

expand the mechanisms
synthesize the mechanisms

decide the programming language
decide the programming method

space complexity
time complexity
programming methods
package of modules
operability
security
durability
standard/regulations

Figure 3. Thinking process replaced by software concepts

The step (2) is to decide the performance and the specification.
The system throughput is 100 requests per second. The response
time is within 1 second. However, the ability of each client
machines and the sever machine is in their own way.

The step (3) is to analyze the functions and the constituents.
Regarding a calculator, it should have the way to input data and to
display the result. First of all, we must decide the kind of
terminal in order to satisfy the requirements. Let us imagine that
there are two selections, a limited hardware terminal or a general
terminal. In case of selecting a limited hardware, this calculator
will be realized using a key pad, a LCD (Liquid Crystal Display)
and so on. In case of selecting a general one, this calculator will
be realized using a web browser or limited software on PC
(Personal Computer), on PDA (Personal Digital Assist), or so on.
The limited hardware terminal is usually more expensive than the
general one. Therefore, we have selected the general one, and to
simplify the design, finally selected limited software. Then we will
be able to select a simple client-server model. Figure 4 shows the
functions required for the constituents based on client-server
model. The figure combining a small square into a big square
means a process. The extracted functions are the following: to
invoke the processes of the clients and the server, to input data,
to send a request message to calculate the sum of two numbers,
to communicate with the server process, to receive the request
message on the server, to calculate the sum, to send the response
message of the result to the client process, to communicate with
the client process, to receive the response message on the client
and to display the result. In Figure 4, the two figures of processes
show the simplest mechanism, and some arrows show the data
flow. The thinking process to extract the functions proceeds
along the data flow in the system.

“Application of design process in mechanics
to software design”

4th International Conference on Axiomatic Design
Firenze – June 13-16, 2006

Copyright © 2006 by ICAD2006 Page: 5/7

Client process Serve process

input data

invoke process

calculate sum

send msg.
(request)

send msg.
(respond)

communicate
with client

receive msg.
(request)

receive msg.
(respond)

display result

communicate
with server

Client process Serve process

input data

invoke process

calculate sum

send msg.
(request)

send msg.
(respond)

communicate
with client

receive msg.
(request)

receive msg.
(respond)

display result

communicate
with server

Figure 4. The functions required for the constituents

based on client-server model

Client process Serve process

command command

input()

display()

send()
receive()

cal_sum()

send()
receive()

Client process Serve process

command command

input()

display()

send()
receive()

cal_sum()

send()
receive()

Figure 5. The first –level mechanism line diagram

The step (4) is the construction of mechanisms. The first-level
mechanism line diagram is shown in Figure 5. The general OS
provides the mechanisms to invoke a process by using a
command, to input data and to display data. Those are shown as
the command, the method of input() and the method of display().
It also provides the simple mechanism to send and receive a
message and to communicate with the processes, i.e. the method
of send() and the method of receive(). We must make the
mechanism to calculate the sum such as the method of cal_sum().
 However, we need to remember that there are thousands of

client terminals in the system to decide the mechanism to send
and receive request messages. If hundreds of requests arrive at
the system, hundreds of server processes will be required because
we would like to deal with the requests simultaneously. However,
the server system will go slow or be down immediately if the
server processes are invoked according to the requests of clients
because the server system, which is just one, consumes many
areas of memory in order to control hundreds of processes.
According to this mechanism, it may be difficult to satisfy both
the constraint of the number of the clients and that of the
response time even if the server machine has higher performance.

The mechanism of queuing system is known well to solve this
problem. We must consider overheads of the queuing system.
However, we can decide the number of server processes
independently because the server process can queue the request
messages from the clients. If the queuing system has the function

to reject the exceeding requests, the strength of the system is
grater. Therefore, even if the number of the server process is just
one, the system will work without the failure. We only tune up the
ability of the processing by increasing the number of processes.
This mechanism is actually available for the mission critical
system, such as a banking system, a trading system and so on.
Thus, this mechanism should be selected.

Client process

Serve process

command

command

input()

display()

put_msg()

get_msg()

cal_sum()

put_msg()

get_msg()

request
queue

response
queue

Client process

command

input()

display()

put_msg()
get_msg()

Client process

Serve process

command

command

input()

display()

put_msg()

get_msg()

cal_sum()

put_msg()

get_msg()

request
queue

response
queue

Client process

command

input()

display()

put_msg()
get_msg()

Figure 6. The mechanism line diagram(queuing system)

Next, let us select the same way in order to send and receive
response messages. However, if the queues exist client by client,
we need to make thousands of queues in the system. When the
queues are made on the server, the problem of memory shortage
will occur again because the queuing system consumes many
areas of memory for the queues.

Then, let us consider the idea that the queues should be made
on client side. In this case, the server process must identify the
request message of each client, decide the corresponding queue,
and respond to the client. The logic and the algorithm are very
complicate. The better solution is that the server process has just
one queue for the response, and each message has the
identification, which each client process sets to the request
message and the server process copies from the request message
to the response message. Thus, each client can get the message by
using the identification.

Figure 6 shows the mechanism line diagram adopting queuing
system. In this figure, we will newly suggest the mechanisms of
the method of put_msg() and the method of get_msg() instead
of the method of send() and the method of receive(). These
mechanisms should have the function to put a message with the
specified identification to the specified queue, and the function to
get a message with the specified identification from the specified
queue. Thus, we make the decisions while zigzagging between the
functional region and the mechanism and structure region.

The step (5) is to decide the structure. Figure 7 shows the
whole mechanism on the client and Figure 8 shows that on the
server. We can understand that if all methods are organized at the
point of objects and methods, the classes such as terminal, queue,
and calculator are necessary for the processes. The whole
structure corresponding to each function is shown in Figure 9.

The step (6) is to consider the constraints. In this step, we have
to consider the various constraints again, such as time complexity,
space complexity, programmability, the construction of packages

“Application of design process in mechanics
to software design”

4th International Conference on Axiomatic Design
Firenze – June 13-16, 2006

Copyright © 2006 by ICAD2006 Page: 6/7

of components, operability, security, and durability. Especially,
exception handling, i.e. strength of the system should be
considered by using some state diagrams like Figure 2.

The step (7) is to decide the interfaces. Each interface will be
decided method by method in Figure 9. We must specify the
parameters of the methods such as the identification to identify
messages in the previous consideration, the message for request
and response, the address of queues and so on.

Client process

command

input()

display()

put_msg()
get_msg()

request
queue

response
queue

input()

display()

terminal
put_msg()

get_msg()

queue

put_msg()

get_msg()

queue

Client process

command

input()

display()

put_msg()
get_msg()

request
queue

response
queue

input()

display()

terminal

input()

display()

terminal
put_msg()

get_msg()

queue

put_msg()

get_msg()

queue

put_msg()

get_msg()

queue

put_msg()

get_msg()

queue

Figure 7. The whole mechanism on the client

Serve process

command

get_msg()

cal_sum()

put_msg()

request
queue

responce
queue

put_msg()

get_msg()

queue cal_sum()

calculator

put_msg()

get_msg()

queue

Serve process

command

get_msg()

cal_sum()

put_msg()

request
queue

responce
queue

put_msg()

get_msg()

queue

put_msg()

get_msg()

queue cal_sum()

calculator

cal_sum()

calculator

put_msg()

get_msg()

queue

put_msg()

get_msg()

queue

Figure 8. The whole mechanism on the server

calculate the
sum of two
numbers

input data

invoke
process

comm.
request

calculate
the sum

send msg.
(request)

comm.
response

display
the result

recieve msg.
(request)

An online
calculator based
on client-server

model

input()

command

request
queue

calculator

put_msg()

display()

get_msg()

terminal

cal_sum()

send msg.
(response)

recieve msg.
(response)

put_msg()

get_msg()

response
queue

I/O data

Functional
requirement

Functional
structure

Functional
element

Mechanism
element
(method)

Structural
element
(object/class)

Overall
Structural
(package)

Functional region Mechanism and structure region

calculate the
sum of two
numbers

input data

invoke
process

comm.
request

calculate
the sum

send msg.
(request)

comm.
response

display
the result

recieve msg.
(request)

An online
calculator based
on client-server

model

input()

command

request
queue

calculator

put_msg()

display()

get_msg()

terminal

cal_sum()

send msg.
(response)

recieve msg.
(response)

put_msg()

get_msg()

response
queue

I/O data

Functional
requirement

Functional
structure

Functional
element

Mechanism
element
(method)

Structural
element
(object/class)

Overall
Structural
(package)

Functional region Mechanism and structure region

Figure 9. The whole structure corresponding to each

function

The step (8) is to decide the algorithm. The algorithm of the
main process and each method should be decided by considering

each interface, each state of the objects and each state transition
of them.

2.4 RESULT AND DISCUSSION
In the above consideration, we have shown that software design
can proceed by using the thinking process in mechanics replaced
by the set of concepts in software design. The reason why it is
possible is that there exist the super-ordinate concepts between
the set of concepts in mechanics and that in software. Moreover,
at the point of software design view, we found that all main
counterpart concepts can be extracted without exception.

Design methodology has the concepts embedded in the
thinking process. Therefore, it is difficult to apply design
methodology in a field to the other field. We have divided the
thinking process with the embedded concepts to two parts, a
thinking process independent of the concepts and the concepts.
Therefore, it has become possible to apply design methodology in
mechanics to that in software (Figure 10).

We are thinking that by using this result, software designers can
understand each idea and thought efficiently, and software
productivity will be improved. Moreover, failure knowledge will
be also translated and used in each field.

We are also thinking that this result is deeply related to how
designers recognize and understand an object to design. If the
studies in this approach proceed, it is thought that the unified
design methodology will have been realized, which has the unified
thinking process and in which the concepts in each field can be
exchanged.

Concepts
in mechanics

Common thinking process

Concepts
in mechanics

Concepts
in software

Thinking process
in mechanics

concept

correspondence

process

Concepts
in mechanics

Common thinking process

Concepts
in mechanics

Concepts
in software

Thinking process
in mechanics

concept

correspondence

process

 Figure 10. Application of design methodology in
mechanics to that in software

3 CONCLUSIONS
In this paper, we have shown that design process in mechanics is
applicable to software design by abstracting a set of concepts
from the thinking process in mechanics and the counterpart
concepts in software design.
 Design methodology in each industry includes the particular
concepts in the field. Therefore, it is difficult to apply it to the
other industries. Our approach and findings help the
establishment of the unified design methodology.
 Our findings greatly help that software designers can
understand each idea and thought in practical design in software
development.

“Application of design process in mechanics
to software design”

4th International Conference on Axiomatic Design
Firenze – June 13-16, 2006

Copyright © 2006 by ICAD2006 Page: 7/7

4 REFERENCES

[1] Yoneyama, T., 1993, Basic knowledge of machine design (in
Japanese), Nikkan-Kogyo Press.

[2] Hatamura, Y., 1999, The Practice of Mechine Design,
Clarendon Press Oxford.

[3] Hatamura, Y., 2006, Decision-Making in Engineering
Design: Theory and Practice (Decision Engineering),
Springer-Verlag.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

