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ABSTRACT 

This paper aims to provide a mathematical perspective 
for the two axioms in Axiomatic Design. Specifically, the 
Independence Axiom 1 and the Minimum Information 
Axiom 2 are viewed from the perspective of  equality 
constraint optimization.  

Axiomatic Design declares Axiom 1 and Axiom 2 to be 
axiomatic; that they cannot be proven nor derived from other 
principles or laws of  nature. In fact, this paper shows that the 
concept and implementation of  the two axioms parallel those 
of  equality constraint optimization. The two axioms could 
have been derived from it.  

This paper also shows that the qualifying condition 
imposed by Axiom 1 that the design matrix be triangular or 
diagonal is only a sufficient condition for functional 
independence. It is subset of  a larger set that satisfies the 
necessary condition. Thus, the design that has been allowed by 
Axiom 1 and found by Axiom 2 to have the minimum 
information content may not necessarily be the design with 
minimum information content among the larger set. 

Keywords: equality constraint optimization, functional 
independence, constraint qualification, Axiomatic Design. 

1 INTRODUCTION 

Axiomatic Design (AD) is a design framework built on 
two rules for mapping functional requirements (FRs) to 
design parameters (DPs). The two rules are assumed to be 
axiomatic. Namely, they are self-evident truths for which there 
are no counter-examples or exceptions. They cannot be 
proven nor derived from other laws or principles of  nature, 
Suh [1990]. AD has been around for four decades already. Yet 
it has not caught ‘fire’ in design community. A principal 
reason is the axiomatic assumption AD imposed. It is difficult 
for designers to accept truth without proof. Some criticisms 
are: “AD people invoke axioms to avoid proof  of  theory” and 
“AD is not a mathematically valid method”. The fact is logic 
and mathematical treatments have been provided to clarify 
and reinforce concepts in AD. For example, based on formal 
logic, Lu and Liu [2011] presented a theoretical underpinning 
to elucidate the delineation of  “what” from “how”, providing 
justification and execution of  mapping and decomposition 
unique to AD. As another example, Rinderle [1982] developed 
the mathematics for measuring coupling: reangularity which 
measure how close a design matrix is to becoming a 

decoupled triangular matrix; and semangularity which 
measures how dominant the diagonal elements of  a matrix is 
relative to its off-diagonal elements. It is a measure of  how 
close the matrix is to becoming the uncoupled diagonal 
matrix. This paper is yet another effort to provide 
mathematical basis for AD. 

The rest of  this paper is organized as follows. In Section 
2, we use an example involving single functional requirement 
to demonstrate the impact of  constraint optimization on 
design. In Section 3 we develop the mathematical basis for 
constraint optimization involving multiple functional 
requirements. In Section 4 we view Axiom 1 and Axiom 2 in 
the context of  the mathematical basis derived in Section 3. 
Concluding remarks then follow in Section 5. 

2 CONSTRAINT OPTIMIZATION FOR SINGLE 
FUNCTIONAL REQUIREMEN - AN EXAMPLE 

The power steering assembly in car consists of  a vertical 
tubular “top hat” joined to a horizontal tubular housing 
(Figure 1). The steering valve rotates inside the top hat to 
direct fluid left/right for power steering. The top hat is made 
of  cast iron (E=120,000MPa, µ=0.29) for wear resistance; the 
housing is made of  aluminum (E=71,000MPa, µ=0.34) for 
weight reduction. Press fitting joints the two components of  
dissimilar material together. Figure 2 shows the cross-section 
of  the assembly at the joint.  

 
Figure 1. The power steering assembly. 
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Figure 2. Cross-section of  assembly at the joint. 

One functional requirement FR is that the radial pressure 
developed at the interface holds the two components together. 
From an engineering handbook, the radial pressure p is given 
in Equation 1. 

 

 
 

To achieve a target value FR*, we solve Equation (1) for 
DP* that yields FR*. Hereafter bolded letters denote vectors. 
One approach is to minimize and reduce to zero the error: 

 

Error  FR DP1, DP2 , DP3 , DP4  FR* 2 
 
The result is DP* = (26.00, 20.9738, 21.0161, 16.00) in 
millimeters which would give FR= 20 Pa, the target value. In 
our later discussion, we shall refer to this approach as nominal 
design.  

In the presence of  variability, FR will deviate from its 
target FR*. For example per Equation (1), a machining error 
of  ±25m in and will result in a radial pressure that 

ranges from -3.65Pa to 43.70Pa. (Axiomatic Design calls this 
range the system range.) At radial pressure < 0, solution by 
nominal design fails since a loose fit occurs at zero radial 
pressure. 

The correct formulation is to pose the problem as an 
equality constraint optimization [Luenberger and Ye, 2008]. 
The designer should minimize the deviation due to variability, 
subject to the constraint that FR(DP) equals FR*, and thus 
expand FR(DP) in a Taylor series: 

 
where NV denotes the noise variable, the source of  
variability; and the summation term is the deviation in FR. 
The NVs in this example are the radii and . So that: 

 

Using squared deviation (SD) as the norm, we formulate 
the equality constraint optimization as follows: 

 
Qualification (4) is necessary. Otherwise, all partial 

derivatives of  FR(DP) with respect to DPi equal zero, FR(DP) 
will not be a function of  DP, and optimization cannot 
proceed. In our example, qualification (4) is satisfied because 
Equation (1) shows FR(DP) to be indeed a function of  DP. 
Expression (5) is the objective function to minimize. Equation 
(6) is the constraint equation that DP needs to satisfy at all 
times. In our discussion later, we shall call this approach of  
Equality Constraint Optimization the ECO design. 

For both the nominal and ECO design, we use Excel to 
compute the sensitivity to variability and the squared deviation 
per Expression (5). The results, see Table 1 and Table 2, show 
that both DP* (26.00, 20.9738, 21.0161, 16.00) from the 
nominal design and DP* (25.00, 21.9363, 22.0000, 17.00) 
from the ECO design give FR=20Pa. However, sensitivity to 
variability is less with ECO design. Consequently, the squared 
deviation using the ECO design is only 36% that of  the 
nominal design. 

From this example, we conclude that we should adopt the 
ECO design and the equality constraint optimization 
approach. 

Table 1. Sensitivy and squared deviation of  nominal 
design. 

 

Table 2. Sensitivity and squared deviation of  ECO 
design. 
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so that FR DP1, DP2 , DP3 , DP4   p g c, ro, ri , a  ,
where DP1, DP2 , DP3 , DP4 are respectively c, ro, ri , a.

ri ro

ri ro

Description

Housing OR, c
Housing IR, ro
Top hat OR, ri
Top hat IR, a

Nominal
Value

26.00
20.9738
21.0161

16.00

∆r

0.0250
0.0250

Sensitivity Squared

∂FR/ ∂r Deviation

-437.4396 119.5959
434.3347 117.9041

Radial Pressure 20.00 Total = 237.5000

Description

Housing OR, c
Housing IR, ro
Top hat OR, ri
Top hat IR, a

Nominal
Value

25.00
21.9363
22.0000

17.00

∆r

0.0250
0.0250

Sensitivity Squared

∂FR/ ∂r Deviation

-267.4571 44.7083
261.5885 42.7678

Radial Pressure 20.00 Total = 87.4762
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3 CONSTRAINT OPTIMIZATION FOR 
MULTIPLE FUNCTIONAL REQUIREMENTS 

For multiple functional requirements, FR(DP) is a vector 
valued function of  the form 

 

 
 
We first qualify that FR(DP)-FR* = 0 is non-degenerate. 

Otherwise there can be no solution for DP and optimization 
cannot proceed. Given the system of  equations: 

 

 
 
For above system of  equations to be non-degenerate, m 

cannot be less than n. If  m equals n, the determinant J of  the 
Jacobian matrix of  FR(DP) must not be zero: J ≠ 0. That is: 

 

J
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
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DPn
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 0. 7 

 
If  m is greater than n, then we choose n among the m DPs 

such that the associated Jacobian J ≠ 0.  
Note that the Jacobian matrix is, in fact, the design matrix 

[A] in Axiomatic Design: 

 
Thus a re-statement of  Equation (7) is that to qualify a system 
of  equations FR(DP)-FR* = 0 for optimization, its Jacobian 
J, which is the determinant of  [A] matrix, must not be zero: 

 

J A 

a11 a12  a1n

a21 a22  a2n

   

an1 an2  ann

 0. 8 

 
In testing for J ≠ 0, we are in fact testing the functional 
independence of  FR (DP) [Chiang, 1984]. 

To derive the expression for squared deviation, we first 
expand FR (DP) into n set of  Taylor series: 

 

 
 
Each ith equation above is a Taylor series expansion of  

similar to Equation (3). The above equation may be 

written in matrix form: 
 

 
 

where the [B] matrix is the Jacobian matrix of  FR with 
respect to the noise variable NV with element 

 
The squared deviation (SD) is then the inner product: 

 

 
 
The formulation for equality constraint optimization of  

multiple functional requirements is an extension of  Equations 
(4), (5) and (6) as follows: 
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4 AXIOMATIC DESIGN IN THE CONTEXT OF 
EQUALITY CONSTRAINT OPTIMIZATION  

Axiomatic Design (AD) is built on two axioms [Suh, 
1990]. Axiom 1 is a rule that qualifies a design as acceptable 
only if  its FRs maintains independence. Of  those that qualify, 
Axiom 2 then selects the one that has minimum information 
content. The process behind the two axioms, qualifying 
designs for functional independence followed by searching 
among the qualified designs for one with minimum 
information content, is similar to the formulation of  equality 
constraint optimization. We therefore view AD in that light.  

4.1 INDEPENDENCE AXIOM 1 
According to Equation (8), a constraint qualification for 

FR(DP) is that its Jacobian J, i.e., the determinant of  [A] 
matrix, not be zero. This is a necessary condition N.  

In AD, Axiom 1 requires the design matrix [A] to be 
either diagonal or triangular. Since the determinant of  these 
two types of  matrices is not zero, the Axiom 1 requirement 
does fulfill the constraint qualification imposed by Equation 
(8). This also means that the FRs so qualified are functionally 
independent. 

However, the condition that [A] be diagonal or triangular 
is only a sufficient condition S for |A| ≠ 0. It is a subset of  
the larger set N that satisfies the necessary condition (Figure 
3) Therefore, there can be designs whose design matrix [A] is 
neither diagonal nor triangular and yet its determinant J ≠ 
zero. These designs continue to be functionally independent. 
They may possess information content lower than the 
minimum found among the subset S. Thus in using Axiom 1 
to qualify design, AD may completely miss these designs. 
 

 
Figure 3. Sufficient condition as a subset of  necessary 

condition. 

4.2 INFORMATION AXIOM 2 
 Both ECO design and AD acknowledge the presence of  

variability and the associated uncertainty in design. Both use 
deviation in FR from the target as the metric for variability. 
ECO design uses squared loss to quantify loss due to 
deviation: the farther the deviation from the target, the larger 
the loss (Figure 4). It delves deeper to identify the sources of  
the variability NV, and compute the matrix [B], the sensitivity 
of  FR to these sources. With [B]T[B] as the objective function, 
it becomes possible to minimize sensitivity for reduced 
deviation. 

 

 
Figure 4. Squared loss function. 

AD measures variability in terms of  the range of  
deviation and calls it the system range. It then uses absolute 
loss to quantify the loss due to deviation. Absolute loss 
defines a range in FR, known as design range, center on the 
target value FR* (Figure 5). A design whose deviation in FR 
falls within the design range incurs no loss. Otherwise, it will 
incur a loss of  (1 – p), where p is given by: 

 

The common range is the overlap of  the design range and 
system range shown in Figure 5.  

Figure 5. Design range, common range & system range. 

AD further defines a quantity called the information 
content I as: 
 

. 
Axiom 2 then uses information content I as the metric to 

select the design with the least information content I from 
among the designs qualified by Axiom 1. 

Since AD adopts an absolute loss function, designs like A 
and B in Figure 6 whose system range fall within the design 
range are deemed equally good. Both have zero information. 
Thus it is equally likely that Axiom 2 will pick A over B or B 
over A as the best design. This is counter-intuitive. Intuition 
tells us that design B is the better because it has a larger 
margin for error. 

Unlike ECO design, AD does not attempt to identify 
sources of  variability nor provide an objective function to 
minimize. Its treatment of  uncertainty in design is less 
extensive than that of  the ECO design. 
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Figure 6. Design A versus Design B. 

5 CONCLUDING REMARKS 

AD declares Independence Axiom 1 and Minimum 
Information Axiom 2 to be axiomatic; that they cannot be 
proven nor derived from other principles or laws of  nature. 
We have shown, in fact, that the concept and implementation 
of  AD, i.e., qualifying design for functional independence 
followed by searching for the one design with minimum 
uncertainty, parallel those found in the decades-old equality 
constraint optimization. The concept and approach in AD 
could have been derived from it. Hence, there is no need to 
invoke axiomatic assumptions about them.  

The qualifying condition imposed by Axiom 1 that design 
matrix [A] be triangular or diagonal is only a sufficient 
condition S for functional independence. It is subset of  the 
larger set that satisfies the necessary condition N. Thus, the 
design that has been allowed by Axiom 1 and found by Axiom 
2 to have the minimum information content may not 
necessarily be the design with minimum information content 
among the N set. If  a design outside the S set is found to have 

lower information content, then a counter example exists; and 
Axiom 1 and 2 do not hold. 

In adopting an absolute loss function, Axiom 2 at times 
produces conclusions that are counter-intuitive. It is suggested 
that square loss function be used instead.  

AD involvement in assessing uncertainty in design should 
be taken to a larger extend than it currently is. AD should 
begin to recognize and search for the sources of  variability 
NV, sensitivity of  FR to them, and try to reduce the 
sensitivity to achieve a reduced loss. 

AD offers many other concepts and approaches: top 
down zigzag decomposition of  FR-DP; separation of  
domains to provide a neutral environment for defining FRs; 
an environment conducive to bi-modal, linear and non-linear, 
thinking, etc. These are all unique to AD. Hence the name 
Axiomatic Design should be kept even though there is no 
need to invoke axiomatic assumption of  the method. 
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