
Available online at www.sciencedirect.com

2212-8271 © 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the organizing committee of 9th International Conference on Axiomatic Design
doi: 10.1016/j.procir.2015.07.073 

 Procedia CIRP   34  ( 2015 )  76 – 80 

ScienceDirect

9th International Conference on Axiomatic Design – ICAD 2015 

A Statistical Solution to Mitigate Functional Requirements Coupling Generated from 
Process (Manufacturing) Variables Integration-Part 2:  

 A Case Study on Clarifying the Effect of Process (Manufacturing) Variables 
Integration on Functional Requirements Independency  

 Ali Mollajana,* , Mahmoud Houshmandb   
aDepartment of Systems Engineering, GSME, Sharif University of Technology, Azadi Ave., 13418-56545 Tehran, Iran 

bDepartment of Industrial Engineering, Sharif University of Technology, Azadi Ave., 11155-9414Tehran, Iran 

* Corresponding author. Tel.: +98-21-66085820;E-mail address: Alimollajan@alum.sharif.edu 

Abstract 

In this part of the work, to illustrate the strength of the “partial and semipartial correlation analysis, as the proposed solution described in detail 
in part 1, we consider design problem of the manufacturing system of a given product based on a set of hypothetical data and show how to 
explore the most appropriate integration choices in which the (causal) dependencies of the concerned PVs are minimal. Based on the results of 
this study, we emphasize that incorporating the identified sensitive PVs into the integration process will eventually lead to coupling among a 
subset of the product’s FRs and isolation of these PVs is recommended as an ideal solution. However, sometimes, in the real world, for some of 
logical and/or technical reasons; such an ideal solution might be impossible. To deal with such a dichotomy, we use the Design of Experiments 
(DOE) methodology and offer the idea of controlling the values of the concerned PVs at specific levels to find the most appropriate condition 
(s) under which the minimal (causal) correlation between the integrated PVs may be achievable. On the basis of this idea, the worthwhile 
information the manufacturing system designers require to detect the safe levels at which the PVs can be integrated is achievable. 
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1. Introduction 

In order to successfully satisfy customers of a product and 
retain their loyalty, “Quality” of the product is crucial [1]. For 
this reason, today, in competitive production industries, it is 
important to provide the customers with “high quality” 
products at “minimal production Costs” [2-3]. Concerning 
minimizing the product development costs, among all of 
potential factors that can significantly increase the production 
costs, effect of incapable manufacturing systems is 
considerable [3]. In fact, since an unhealthy manufacturing 
system with different kinds of vulnerabilities may cause 
quality degradation for the product through making a series of 
considerable variations in the product’s specifications, design 

of a sound manufacturing system may considerably pave the 
way for reaching a high quality product [4-8].   

From the Axiomatic Design (AD) theory, a manufacturing 
system is, in fact, an engineering system intended to support 
the product’s PVs [9-12]. Therefore, from this view, any 
technical problem for supporting the PVs is considered a 
serious obstacle for satisfying both DPs and FRs of the 
product. That is, design of a capable manufacturing system 
should be regarded as one of the most critical steps in 
developing a high quality product [12-13].     

With respect to design of a sound manufacturing system 
based on the principles of the AD theory, part 1 of this work 
proved that integration of the product’s PVs on a single 
process entity is a good way for reaching system designs with 
relatively lower complexity provided that no serious “noise 
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factors” exist in the system [14]. In fact, in part 1 of this study, 
we argued that, due to the presence of some active noise 
factors in manufacturing environments, the integration of PVs 
may unintentionally result in development of some significant 
statistical causal relationships among a specific subset of the 
PVs. Part 1 of this work showed that any statistical causal 
relationships among the PVs results in violating the AD’s First 
(Independence) Axiom in both process and physical design of 
the product even though uncoupled or decoupled mapping 
designs are apparently presented and increases the cost (loss) 
the product’s customers have to incur. However, because of 
some technical/ physical/financial constraints, we often have 
to integrate the PVs. 

In part 2 of the present work, the application of the 
proposed statistical solution, built on partial & semi-partial 
correlation analysis, using a case-study is illustrated. In fact, in 
this part of this study, we are going to employ the proposed 
solution, described in detail in section 4 of part 1 of this work 
study, to study design problem of the manufacturing system of 
a product with the aim of exploring the most appropriate 
integration choices  in which the PVs dependencies are 
minimal is illustrated. In this case- study, we have used a set 
of hypothetical data to illustrate the application of the 
proposed solution. 

2. Case Study: Analysis of the Process Integration Effect 
on Independency of Functional Requirements of a Product  

In this section of part 2, for the purpose of illustrating effect 
of the process integration practice on independency of 
Functional Requirements (FRs) of a product, consider a 
manufacturing system of a given product about which “poor 
Return of Investment (ROI)” has been reported as major 
concern of the management. On the basis of the information 
elicited from a series of interviews with the stakeholders, it is 
concluded that such an undesirable event is originating from 
“low product variety”. Because of this, with the aim of dealing 
with the problem effectively, at the first (highest) level of the 
system abstraction, “improvement of the ROI” is defined as 
one of the most important FRs that must be established at the 
functional domain of the product. Moreover, in order to satisfy 
this FR, a “production system with high level of variety” is 
needed as the respective Design Parameter (DP) at the 
physical domain of the product. Finally, for the purpose of 
fulfilling this DP, a Flexible Manufacturing System (FMS), as 
the corresponding PV at process domain of the product, is 
developed.  

With respect to developing an effective FMS, for the 
particular purpose of the present study, here we are going to 
concentrate our considerations just on this design variable 
(FMS) and continue the work by confining our discussion into 
decomposing this PV into a set of sub-PVs at the second level 
of hierarchy. Hence, followings are given as the PVs that must 
be established at the second level of system abstraction; 

 PV.1 : Flexible Trained Manpower 
 PV.2 : Flexible Material Handling via CNC Machines 
 PV.3 : Standardized Procedures 

At this level of decomposition, a multi-skill worker, as a 
flexible trained manpower, is employed to apply the 
standardized procedures and commonly work with two 
different CNC machines. In fact, at the current level of 
decomposition, for some economical and technical reasons, 
integration of Man, Machine, Method, and Material is 
inevitable. Concerning this kind of process integration, it 
should be noted that such a process integration is, in fact, an 
“information integration”. In this case, the interaction between 
“man” and “machine” can be regarded as one of the most 
important sources of generating “noise factors”. Regarding 
this case, the number of settings the machines require to 
properly operate is emphasized as the most serious nose factor 
that should be mitigated if it cannot be eliminated completely. 
In fact, if the number of required settings for two machines 
significantly increases, the worker may not appropriately 
divide his/her available time between two machines and, as a 
result, the machines will not be served perfectly. In such a 
situation, the functions of the machines may depend causally 
on each other even though they are originally independent of 
each another. In other words, if increase in number of the 
settings exceeds a specific limit, the system will lose its 
flexibility to some extent and functions of the machines will 
be causally correlated with each other. However, as mentioned 
earlier, for some of technical reasons, this integration has to be 
done.  

For the purpose of illustrating the strength of the proposed 
solution  in detecting whether there is a (causal) correlation 
between a given pair of the concerned PVs, Table 1 is given to 
present ten hypothetical observations provided for each of the 
PVs (PV1, PV2, and PV3).  

Table 1. The PVs Observations 

Iteration (Day) PV.1 PV.2 PV.3 
1 68.00 72.00 74.00 
2 46.00 55.00 61.00 

3 50.00 56.00 51.00 
4 43.00 48.00 45.00 
5 76.00 54.00 60.00 
6 59.00 46.00 62.00 
7 40.00 52.00 35.00 
8 36.00 43.00 38.00 
9 40.00 58.00 46.00 

10 53.00 56.00 49.00 
 
Prior to applying the partial and semipartial correlation 

analysis, it is useful to first consider the “simple correlations” 
(zero-order correlation) between every pair of the PVs. Such a 
consideration can provide important general information about 
statistical tendency of the PVs to be correlated with each other 
(Table 2). 

As can be seen in Table 2, it seems that the PV.1 and the 
PV.3 tend to be correlated with each other significantly. In 
addition, according to the argument presented in part 1 of the 
study, here it is necessary to emphasize that this statistical 
relationship, that has been developed between the PV.1 and the 
PV.3 unintentionally, implies a causal relationship between this 
pair of the PVs. That is, the inherent independence of the PV.1 
and the PV.3 has been violated. 
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Table 2. The zero-order correlation among PV.1, PV.2, & PV.3  

 PV.1 PV.2 PV.3 

PV.1 
Pearson Correlation 1 .458 .791** 

Sig. (2-tailed)  .184 .006 
N 10 10 10 

PV.2 
Pearson Correlation .458 1 .603 

Sig. (2-tailed) .184  .065 
N 10 10 10 

PV.3 
Pearson Correlation .791** .603 1 

Sig. (2-tailed) .006 .065  
N 10 10 10 

**. Correlation is significant at the 0.01 level (2-tailed). 

However, in order to further examine the tendency of the 
three random variables PV.1, PV.2, and PV.3 to be correlated 
with each other, performing a course of “partial and semi-
partial correlation analyses” may be more informative. For 
this reason, the Table 3 is provided to give required 
information about the first-order partial correlation between 
PV.1 and PV.2 where the effect of PV.3 is removed.      

Table 3. The First-order Partial Correlation between PV.1 and PV.2 where the 
Effect of PV.3 is removed. 

Control Variables PV.1 PV.2 
PV.3 

PV.1 
Correlation 1.000 -.041 

Significance (2-tailed) . .917 
Df 0 7 

PV.2 
Correlation -.041 1.000 

Significance (2-tailed) .917 . 
Df 7 0 

 
According to Table 3, in fitting an appropriate multiple 

regression model in which PV.2 and PV.3 are used as 
explanatory variables (regressors) to predict (control) behavior 
of the PV.1, when the PV.3 has already been in the model, 
adding the PV.2 does not show any significant contribution to 
predicting (controlling) the behavior of the PV.1. This fact, 
therefore, clearly implies that incorporating PV.3 into the 
integration process which involves PV.1 and PV.2 should be 
prohibited. In other words, integrating PV.1 and PV.3 on a 
single process entity may result in developing a causal 
relationship between these two PVs and, hence, a “coupled 
process design” is expected to result. Continuing the “partial 
correlation analyses” for three process variables PV.1, PV.2, 
and PV.3, the same results are obtained and existence of a 
causal relationship between PV.1 and PV.3 is confirmed.  
According to Table 4, in order to predict/control the behavior 
of the PV.1, incorporating the PV.3 into a regression model 
which already has included the PV.2 is significantly effective.  

Table 4. The First-order Partial Correlation between PV.1 and PV.3 where the 
Effect of PV.2 is removed. 

Control Variables PV.1 PV.3 
PV.2 

PV.1 
Correlation 1.000 .726 

Significance (2-tailed) . .027 
df 0 7 

PV.3 
Correlation .726 1.000 

Significance (2-tailed) .027 . 
df 7 0 

 

That is, PV.1 and PV.2 can be considered to be independent of 
each other, but, on the other hand, since PV.3 and PV.1 are 
significantly correlated with each other, incorporation of the 
PV.3 can significantly help us predict the PV.1’s behavior 
soundly. Hence, in short, any choice of process integration 
which is to include both PV.1 and PV.3 should be rejected.    

Similarly, analysis of information presented in the Table 5 
also confirms that integrating the PV.1 and the PV.3 on a single 
process entity will result in a fully coupled system design as 
well;  

Table 5. The First-order Partial Correlation between PV.2 and PV.3 where the 
Effect of PV.1 is removed. 

Control Variables PV.2 PV.3 
PV.1 

PV.2 
Correlation 1.000 .444 

Significance (2-tailed) . .231 
df 0 7 

PV.3 
Correlation .444 1.000 

Significance (2-tailed) .231 . 
df 7 0 

The Fig. 1 outlines all information about degree of the PVs 
tendencies to be causally correlated with each other. As can be 
seen in this figure, significance of the first-order partial 
correlation between PV.1 and PV.3 where the effect of PV.2 is 
removed is relatively considerable and, because of this fact, it 
specifically warns us about any choice of the PVs integration 
which involves both PV.1 and PV.3.  

 
 
 

 

Fig. 1. The First-order Partial Correlation Analysis (Where; “1”, “2”, and “3” 
represent PV.1, PV.2, and PV.3, respectively) 

Although the partial correlation analysis has identified the 
best choice of the PVs integration well, here employment of 
the semipartial correlation analysis for ensuring existence of a 
specific statistical causal relationship between PV.1 and PV.3 
where they are integrated on a single process entity can be 
insightful. For this purpose, calculating either rଶሺଵ.ଷሻ or rଶሺଷ.ଵሻ 
can serve the objective well. However, because of similarity, 
here we have confined ourselves to calculating rଶሺଵ.ଷሻ. Hence, 
based on the Eq. (32) of part 1 of the study, Tables 6 and 7 are 
presented as followings; 

Table 6. Coefficients of Determination from the Multiple Regression Model 
in which PV.2 is Response Variable 

Model R R Square Adjusted R 
Square 

Std. Error of 
the Estimate 

A .604a .365 .184 7.21524 

a. Predictors: (Constant), PV.1, PV.3 

rଵଶ.ଷ ൌ െ0.041 

rଵଷ.ଶ ൌ 0.726 rଷଶ.ଵ ൌ 0.444 
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Table 7. Coefficients of Determination from the Simple Regression Model in 
which PV.2 is Response Variable 

Model R R Square Adjusted R 
Square 

Std. Error of 
the Estimate 

B .603a .364 .285 6.75485 

a. Predictors: (Constant), PV.3 

Therefore, based on the information given in recent two 
tables (Tables 6 & 7), the semipartial determination for 
measuring the marginal contribution of PV.1 to predicting PV.2 
where PV.3 is already included in the regression model is; ݎଶሺଵ.ଷሻଶ ൌ ܴଶ.ଵଷଶ െ ܴଶ.ଷଶ ൌ 0.001 (1) 

 
Hence, on the basis of the semipartial correlation analysis, 

again, it is clearly concluded that any choice of process 
integration in which the PV.1 and the PV.3 are to be integrated 
together should be avoided.  

Despite all conclusions above, however, it is clear that, 
logically, we cannot consider the workers (PV.1) and 
procedures (PV.3) to be two isolated variables. In fact, in the 
real world, obviously; we always have to integrate PV.1 and 
PV.1 together in order to accomplish any given production 
operation. This fact simply means that “integration of PV.1 
and PV.3 is inevitable”. Thus, it seems that here we are faced 
with a dichotomy.  

To deal with such an intricate dichotomy mentioned above, 
controlling the values of the concerned PVs (PV.1 and PV.3) at 
specific levels, as an idea rooted in Design of Experiments 
(DOE) methodology, can help us find the most appropriate 
condition (s) under which the minimal (causal) correlation 
between the integrated PVs can be achieved. In other words, 
here use of the DOE methodology can help us explore that 
specific combination of the levels of the PV.1 and the PV.3 at 
which integration of these two PVs may not have serious 
(significant) effect on the FRs independency. 

 For the purpose of determining optimum conditions under 
which the safest process integration may be achievable, the 
(causal) covariance between the PV.1 and the PV.3 for every 

possible combination of the specified levels is calculated. The 
results of four replicants are shown as Table 8; 

 
Table 8. Covariance between PV.2 and PV.2 Integrated Together in Different 
Combinations of the Specified Levels. 

Procedures 

Workers 

 

 

15  
 

70  
 

125  

1 
 

130 155 

 

 

34 
 

40 

 
 
 

 

20 
 

70  
74 180 80 75 82 58  

2 
 

150 
 

188 
 

136 
 

122 
 

25 
 

70  
159 126 106 115 58 45  

3 
 

138 
 

110 
 

174 
 

120 
 

96 
 

104  
168 160 150 139 82 160  

In addition, on the basis of the information of the Table 8, 
results of complete analysis of variance (ANOVA) for the 
experiment can be presented as the Table 9. 

 

 

Table 9. Results of Analysis of Variance (ANOVA) for the Covariance Data 
 

Source 
 

Sum of 
Square 

 

d.f. 
 

Mean of 
Square 

 

F0 
 
 

Workers 
 

10683.72 
 
 

2 
 

5341.86 
 

7.91 
 
 

Procedures 
 
 

39118.72 
 

2 
 

19558.36 
 
 

28.97 
 

Interaction 
 
 

9613.78 
 
 

4 
 

2403.44 
 
 

3.56 
 

Error 
 
 

18230.75 
 
 

27 
 
 

675.21  
 

Total 
 
 

77646.97 
 
 

35   

 
Since F0.05, 4, 27 = 2.73, it is found that there are significant 

interactions between PV.1 and PV.3 at the 0.05 significance 
level. In addition, since F0.05, 2, 27 = 3.35, we can also find that 
the PV.1 effects as well as the PV.1 effects are significant at the 
0.05 significance level as well. Moreover, to go one step 
further, since the interactions between PV.1 and PV.3 are 
significant, drawing graphs of means in each experimental 
combination can pave the way for exploring the specific 
combination in which the process integration of these two PVs 
may not lead to developing a significant causal relationship 
between them (Fig. 2). That is, we can find a specific 
condition in which process integration may not result in FRs 
coupling.  

 

 

Fig. 2. Graphs of Procedures-Workers 
 

Therefore, according to the Fig. 2; the minimal covariance 
(correlation) may be expected to experience in “Worker 1- 
Procedure 70” combination. To be clearer, in this combination 
of the PV.1 and the PV.3, we can be sure of maintaining 
independence of   the PV.1 and the PV.3 while they are 
integrated together.  In addition, it is recommended that 
“procedure 15 should be assigned to the worker 1” and 
“procedure 125 should also be assigned to worker 2” if we can 
tolerate some degree of coupling among the PV.1 and the PV.3. 

3. Conclusion and Discussion 

In this part of the study, for the purpose of illustrating the 
strength of the “partial and semipartial correlation analysis” as 
a sound statistical solution for finding the best choice of PVs 
integration and, hence, exploring the right way for reaching an 
optimal system design with minimal complexity, we 
considered the challenge of “the PVs independency 
maintenance in process integration practice” for a given 
manufacturing system of a product.  On the basis of a set of 
hypothetical data, we showed that employment of “partial and 
semipartial correlation analysis” can effectively help system 
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designers detect those PVs that strongly tend to be (causally) 
correlated with each other because of presence of some active 
noise factors in manufacturing environment. We emphasized 
that incorporating the identified sensitive PVs into the 
integration process will eventually lead to coupling among a 
subset of the product’s FRs and, obviously; separation 
(isolation) of these PVs from each other is recommended as 
an ideal solution, if it is possible. However, in some of cases 
in the real world, logically and/or technically; such an ideal 
solution might be impossible. To deal with this dichotomy, we 
offered the idea of controlling the values of the PVs 
concerned at specific levels in order to find the best 
combination (s) of the specified levels in which the minimal 
(causal) correlation between the integrated PVs can be 
achieved. Concerning this idea, we employed the Design of 
Experiments (DOE) methodology to identify the specific 
condition in which the PVs integration may not have serious 
(significant) effect on the FRs independency. In fact, this 
approach provides useful information for the designers to 
identify the safe levels of the PVs at which PVs can be 
integrated and detect the risky levels at which the PVs 
integration will lead to a coupled system design. 
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