
AXIOMATIC PRODUCT DEVELOPMENT LIFECYCLE

By

BULENT GUMUS, M.S.

A DISSERTATION

IN

MECHANICAL ENGINEERING

Submitted to the Graduate Faculty
of Texas Tech University in

Partial Fulfillment of
the Requirements for

the Degree of

DOCTOR OF PHILOSOPHY

Approved

Atila Ertas
Chairperson of the Committee

Stephen Ekwaro-Osire

Timothy Maxwell

Jahan Rasty

Hong-Chao Zhang

Accepted

John Borrelli
Dean of the Graduate School

December, 2005

Copyright, 2005, Bulent Gumus

ii

ACKNOWLEDGEMENT

The successful completion of this work is a testament to the many hours that

others have contributed or sacrificed. I am grateful for these contributions and consider

myself fortunate for having the opportunity to work and share the life with those

individuals listed here.

I would like to express my sincere appreciation to my advisor Professor Atila

Ertas. I have been very honored and privileged to know him and have worked under his

supervision since 1996 and I have benefited greatly from his valuable guidance and from

being exposed to his excellent professionalism. His support and encouragement helped

me accomplish my masters and Ph.D. here at Texas Tech University.

I would like to thank to my PhD committee members: Dr. Stephen Ekwaro-Osire,

Dr. Tim Maxwell, Dr. Jahan Rasty, and Dr. Hong-Chao Zhang for their support,

guidance, and suggestions.

Dr. Derrick Tate has introduced the Axiomatic Design method to me in one of the

design classes I took at Texas Tech. I’d like to thank him for that and also for his

invaluable suggestions and criticism. Deserving special mention is Dr. Ismail Cicek for

his contribution in developing the case study and also for sharing his experience and

wisdom with me.

I am also thankful to OnBoard Software, Inc., and its previous owner, Dave

Spencer, for providing a supportive work place for both professional and personal growth

and also for providing tuition assistance.

Last but not least, I would like to give special thanks to my family. My wife,

Sevinc, and my sons, Batuhan and Orhun, have given me unconditional support and

constant encouragement. They have been also very patient while I have been juggling a

full-time career, a PhD, and my family for the last four years. My parents, brothers and

sisters have helped and supported me, the youngest kid in the house, greatly throughout

the years in all aspects of life.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENT .. ii

ABSTRACT.. vii

LIST OF TABLES... viii

LIST OF FIGURES ... xi

CHAPTER

I INTRODUCTION ...1

1.1 Needs..3

1.2 Objectives ..5

1.3 Research Method ...6

1.4 Scope and Contribution of the Thesis..7

1.5 Dissertation Overview ...8

II PRODUCT DEVELOPMENT LIFECYCLE AND DESIGN METHODOLOGIES 9

2.1 Product Development Lifecycle ..14

2.1.1 Requirement Management ...19

2.1.1.1 Customer Need Assessment...23

2.1.1.2 Requirement Analysis..26

2.1.1.3 Current Problems with Requirement Management................................27

2.1.2 Design ..29

2.1.3 Implementation/Manufacturing ...30

2.1.4 Test and Evaluation..31

2.1.5 Change Management ...32

2.1.6 Project Management ..32

2.2 Axiomatic Design (AD)...33

2.2.1 General AD Concepts ..35

2.2.1.1 AD: Domains ...35

2.2.1.2 AD: Hierarchies ...41

2.2.1.3 AD: Zigzagging ...42

iv

2.2.1.4 AD: Design Axioms...43

2.2.2 AD System Architecture ..50

2.2.2.1 Tree Diagram ...51

2.2.2.2 Module-Junction Diagram ...52

2.2.2.3 AD Flow Diagram..52

2.2.3 AD Benefits ...54

2.2.3.1 Benefits to Designers ...54

2.2.3.2 Benefits to Managers ...55

2.2.3.3 Benefits to Firms..55

2.3 AD with Other Methodologies...56

2.3.1 AD and TRIZ ...59

2.3.2 AD and QFD..62

2.3.3 AD and Robust Design ..69

2.3.4 AD and Concurrent Engineering ...72

2.3.5 AD and Design for X ...75

2.3.6 AD and Failure Modes and Effect Analysis (FMEA)76

2.4 AD and Product Development Lifecycle...77

2.4.1 AD and Requirement Management ...78

2.4.2 AD and Change Management..79

2.4.3 AD and Testing ..81

2.4.4 AD and Project Management...81

2.5 Design and Creativity ..82

2.6 Design, Product Development Lifecycle Models and Computers.....................83

III AXIOMATIC PRODUCT DEVELOPMENT LIFECYCLE (APDL).....................86

3.1 APDL: New Domains and Characteristic Vectors...87

3.2 APDL Framework..89

3.2.1 APDL Process Overview ...92

3.2.2 Customer Needs ...96

3.2.3 Functional Requirements ...98

v

3.2.4 Input Constraints..103

3.2.5 Requirement Matrix, R, and Constraint Matrix, C104

3.2.6 System FR/DP/SC..106

3.2.7 Design Parameters ...107

3.2.8 Design Matrix, D ...108

3.2.9 Input Constraint Allocation Matrix, CA ..112

3.2.10 System Components...114

3.2.11 Process Variables ...116

3.2.12 System Structure Matrix, SS, and Process Matrix, P...............................117

3.2.13 Functional Test Cases and Functional Test Matrix, FT...........................119

3.2.14 Component Test Cases and Component Test Matrix, CT120

3.3 APDL System Architecture ...122

3.4 APDL and Requirement Management...123

3.5 APDL and Other Design Methodologies...125

3.5.1 Reliability Engineering ..126

3.5.2 Design Structure Matrix...126

3.6 APDL and Change Management ...127

3.7 APDL and Project Planning/Scheduling..128

3.8 Discussion..129

3.8.1 Management of Input Constraints..130

3.8.2 Introduction of System Components ...131

3.8.3 Introduction of Test Domain..133

IV CASE STUDY: DEVELOPMENT PROCESS FOR AN AVIONICS SYSTEM..135

4.1 Background..135

4.2 Applying the APDL Approach ..138

1.1.1 Customer Needs ...138

4.2.1 Initial FRs, ICs, and DPs..139

4.2.2 Decomposition and Zigzagging ...141

4.2.2.1 Decomposition and Zigzagging: 1st and 2nd Level...............................141

vi

4.2.2.2 Decomposition and Zigzagging: 3rd Level...149

4.2.2.3 Decomposition and Zigzagging: 4th Level...154

4.2.2.4 Decomposition and Zigzagging: 5th Level...157

4.2.2.5 Finishing Detail Design ...166

4.2.3 Bottom-Up Completion ...166

4.3 System Architecture...167

4.4 Discussions and Conclusion ..167

V CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK........................169

5.1 Conclusions..169

5.2 Suggestions for Future Research ...173

REFERENCES ..175

APPENDIX A NEW THEOREMS ...182

APPENDIX B CASE STUDY – SYSTEM ARCHITECTURE183

APPENDIX C CASE STUDY – SC HIERARCHY ...184

vii

ABSTRACT

In this research, different design methodologies and system/product development

lifecycle models are studied. A new product development lifecycle model, the Axiomatic

Product Development Lifecycle (APDL) model, with a robust structure to develop and

capture the development lifecycle knowledge, is proposed and its use is discussed. The

proposed approach is based on the AD method developed by Suh (1991); hence it inherits

the benefits of applying the Axiomatic Design to product development. The Axiomatic

Design method, in this research, is extended to cover the whole product development

lifecycle including the test domain and new domain characteristic vectors are introduced

such as the input constraint and system component vectors. The APDL model also

provides more guidance than the AD method during the customer need mapping and

during the design decomposition process.

The APDL model helps develop, capture and present both the big-picture and

detail view of the product development knowledge, including design and requirement

traceability knowledge. The objectives of APDL are to guide the designers, developers,

and other members of a transdisciplinary product development team throughout the

development effort as well as to help capture, maintain, and manage the product

development knowledge.

The APDL model aims to improve the quality of the design, requirements

management, change management, project management, and communication between

stakeholders as well as to shorten the development time and reduce the cost. This

research also provides suggestions and recommendations for utilizing different analysis

and synthesis methodologies along with the proposed lifecycle model to improve the

product quality and customer satisfaction.

viii

LIST OF TABLES

2.1 – Some of the existing design process models [Evbuomwan, et al., 1996]................ 18

2.2 – Axiomatic Design Domain Contents ... 36

2.3 – Axiomatic Design Definitions [Suh, 2001] ... 37

2.4 – Characteristics of design domains for various designs [Suh, 2001] 39

2.5 – Sample Master Design Matrix ... 47

2.6 – Junction Types ... 52

2.7 – Advantages and Disadvantages of QFD .. 68

2.8 – DfX Methods and Corresponding FRs .. 75

2.9 – Software tools for design and development lifecycle .. 85

3.1 – APDL Domain Contents .. 90

3.2 – CN Attributes ... 98

3.3 – FR Attributes.. 102

3.4 – Quality Factors for Baselined FR Set .. 103

3.5 – Template for mapping CNs to FRis and ICs.. 105

3.6 – Template for CN to FRi and IC Mapping Explanation.. 106

3.7 – DP Types.. 108

3.8 – Template for FR-DP Decomposition... 109

3.9 – Sample Design Matrix (D): (a) Tabular format, (b) Equation format 110

3.10 – Template for Design Matrix Element Explanation.. 111

3.11 – Template for DP-IC Allocation ... 113

3.12 – Template for DP-IC Allocation Description.. 113

3.13 – System Physical Element Descriptions.. 114

3.14 – SC-PV Mapping Rules... 117

3.15 – Template for DP-SC-PV Mapping... 118

3.16 – Template for DP-SC Mapping ... 118

3.17 – FTC Mapping Table Template... 119

3.18 – FTC and CTC Template... 120

ix

3.19 – CTS Mapping Table Template... 121

3.20 – Comparison of Constraint Management and Allocation Approaches 131

4.1 – Customer Needs (CNs) .. 139

4.2 – FRis and ICs mapped from the CNs .. 140

4.3 – CN to FRi and IC Mapping Explanation ... 141

4.4 - FR1 Description.. 142

4.5 – FR-DP Decomposition: Level 1 and 2... 143

4.6 – Design Matrix Element Explanations .. 144

4.7 – DP-IC Allocations for 2nd Level DPs... 147

4.8 – DP-IC Allocation Descriptions .. 147

4.9 – DP-SC-PV Mapping: Level 1 and 2 .. 148

4.10 – DP-SC Mapping... 149

4.11 – FR-DP Decomposition for FR-DP 1.5... 150

4.12 – Level 3 Master Design Matrix Element Explanations... 152

4.13 – DP-IC Allocation for 2nd Level DPs .. 152

4.14 – DP-IC Allocation Descriptions .. 152

4.15 – DP-SC-PV Mapping: Level 1 and 2 .. 153

4.16 – DP-SC Mapping for DP 1.5 and SC 1.4 .. 153

4.17 – FR-DP Decomposition for FR-DP 1.5.1.. 154

4.18 – Level 4 Master Design Matrix Element Explanations... 156

4.19 – DP-IC Allocation for 2nd Level DPs .. 156

4.20 – DP-IC Allocation Descriptions .. 156

4.21 – DP-SC-PV Mapping for FR-DP 1.5.1 ... 157

4.22 – DP-SC Mapping for DP 1.5 and SC 1.4 .. 157

4.23 – FR-DP-PV Decomposition for FR 1.5.1.1... 158

4.24 – Level 4 Master Design Matrix Element Explanations... 159

4.25 – DP-IC Allocation for 2nd Level DPs .. 160

4.26 – DP-IC Allocation Descriptions .. 160

4.27 – DP-SC-PV Mapping for FR-DP 1.5.1.2 .. 163

x

4.28 – DP-SC Mapping for DP 1.5.1.2 and SC 1.4.1.2 (1)... 164

4.29 – DP-SC Mapping for DP 1.5.1.2 and SC 1.4.1.2 (2)... 165

4.30 – CTS Mapping Table – Level 5... 165

4.31 – CTC 1.4.1.2.1.2.. 166

xi

LIST OF FIGURES

2.1 – Design process model by Ertas and Jones (1996).. 16

2.2 – Axiomatic Design Domains... 36

2.3 – The decomposition template from Hintersteiner (1999).. 48

2.4 – A sample tree diagram for the FR and DP hierarchies .. 51

2.5 – A sample module-junction diagram [Lee, 1999] ... 52

2.6 – Flow diagram representation of Equations i and ii .. 53

2.7 – AD with Other Quality Tools [Mohsen and Cekecek, 2000] 58

2.8 – Other Design Tools within AD Framework [ADSI].. 59

2.9 – S-field... 61

2.10 – House of Quality Matrix .. 66

2.11 – Cascading QFD Matrixes or the Four-Phase QFD Model..................................... 67

2.12 – P-Diagram format .. 70

2.13 – Tracing problem source in AD SA [Nordlund, 1996] ... 79

3.1 – APDL Domains and Characteristic Vectors .. 89

3.2 – APDL Process.. 93

3.3 – System Physical Architecture Template .. 114

3.4 – A sample DSM [Browning, 2001] ... 127

4.1 – Screen Locking Mechanism: Alternative 1.. 161

4.2 – Screen Locking Mechanism: Alternative 2.. 162

1

CHAPTER I

I INTRODUCTION

One may ask, “Humans have been designing and developing products and

services for thousands of years, then why study design methodologies and product

development processes?” The answer is that there is a continuous need for new, cost-

effective, high quality products and a need for better, more structured design and product

development lifecycle (PDL) models that are based on best practices and scientific

principles. Roughly 85% of the problems with new products is the result of poor design

[Ullman, 1992]. Competitive marketplace is forcing industrial firms develop and deliver

higher quality products with increased performance in a shorter time at a lower cost. The

other needs are to improve management of project and product development lifecycle

knowledge, and lower the total lifecycle cost. One of the main reasons why the design

and development practices are poor is that the design process is heavily based on

experience and trial-and-error more than structured and scientific principles and

methodologies. The current product development lifecycle approaches lack a formal

framework and they are not based on scientifically validated design theories and tools.

The product development activities are performed heuristically or empirically.

The design and PDL models should support identifying correct and complete

requirements and verifying the design starting from the very early stages in order to

reduce the cost and schedule and to satisfy the customer since 80% of the products total

cost is committed during the concept development phase [Fredriksson, 1994].

The design and PDL models should support communication between the

stakeholders in order to achieve high quality products that meet the customer

expectations. A survey showed that engineers spend over 70% of their time on

communication related activities, suggesting that achieving effective communication

between stakeholders during the product development lifecycle should be a priority of

process improvement efforts [Chase, 2001].

INTRODUCTION

2

This research seeks to improve the effectiveness of product development lifecycle

by proposing a structured PDL model. The proposed model aims to improve

requirements and change management, quality of design, project management, and

communication between stakeholders as well as to improve the quality of the product.

This research also provides suggestions and recommendations for utilizing different

analysis and synthesis methodologies along with the proposed lifecycle approach to

improve the product quality and customer satisfaction.

The proposed PDL model, called the Axiomatic Product Development Lifecycle

(APDL), is based on the Axiomatic Design (AD) method developed by Suh (1991);

hence it inherits all the benefits of applying AD to product design. The underlying

hypothesis of AD is that there exist fundamental principles that govern good design

practices [Suh, 2000]. The AD begins with two axioms, the independence and the

information axioms. The axioms provide guidelines for design engineers. Dr. Suh

provides a number of theorems and corollaries that are developed from the axioms to

facilitate their use.

The AD method provides a robust structure and systematic thinking to support

design activities, however, it does not support the whole product development lifecycle.

The same logic and scientific thinking can be used and extended to capture, analyze, and

manage the product development lifecycle knowledge.

The structural differences between the APDL model and the AD are the addition

of the test domain to include the test activities and knowledge as well as the addition of

two characteristic vectors to better manage input constraints and system components. The

system architecture concept of the AD method is also extended to include the system

physical architecture. The APDL model also provides more guidance during the customer

need mapping and during the design decomposition process.

The objectives of APDL are to guide the designers, developers, and other

members of a transdisciplinary product development team throughout the development

effort as well as to help managers capture and manage the knowledge produced by the

development effort.

3

The APDL, like the AD method, forces careful consideration of functional

interactions, rather than relying on developer’s intuition and unstructured design

documentation. This is particularly beneficial to large or complex systems, where the

number of functional requirements makes it essentially impossible for single engineer,

even for a development team to manage and communicate the necessary amount of

functional, design, and process information.

Traditional design documentation is typically created at the end of the design

project, and often represents the final product and omits discussion of the reasoning

behind design decisions. The documentation created as a result of applying the APDL

model will overcome this problem and facilitate the communication between the

stakeholders including design teams.

The terms “product” and “system” are used interchangeable in this research. The

proposed model can be applied to design and development of systems, subsystems,

processes, software, services, or organizations.

In the remaining of this section, first I will list the needs of the product and

service industries or benefits that they are seeking as far as design methodologies and

development lifecycle approaches are concerned. Next, I will list the objectives of this

research. Then, I will explain the research method used. Finally, I will describe the scope

and the contribution of this research and I will give an overview of this dissertation.

1.1 Needs

The main motivation of this research comes from the finding that the current

product development lifecycle practices are both ineffective and inefficient, consequently

failing to deliver an optimal result in many aspects. Also, there is a need to reduce lead-

time, cut cost, increase quality of design, increase product performance, and improve

product development lifecycle management.

The reasons for the above finding are explained by listing some of the design and

development lifecycle related needs and problems expressed by the design engineers, the

test engineers, the managers, and the other members of product development teams from

4

the author’s own experience and from the literature. The list contains only the needs and

problems that will be addressed by this dissertation.

1) The design phase, especially the early design phase (conceptual design) of a

development lifecycle has a profound affect on the product quality and

productivity. However, the current PDL models do not provide systematic

procedures to help the designers develop good designs or find innovative design

solutions in shorter time without much try-and-error cycles. Resources and time

are committed for poorly developed designs due to lack of specific principles and

rules for design generation and identifying the quality of the design.

2) The current PDL methodologies and approaches do not really provide a structured

way to connect and analyze different activities and tasks in different phases of the

lifecycle. Therefore, managing and tracking development activities are very

difficult, and the managers have to depend on experience or only verbal guidance

of the different management techniques and lifecycle methodologies.

3) Sometimes, we see ourselves using the same design solution for a different

project; however, it is very cumbersome to dig out the old documents to find what

the details were for the design solution. Even if we find the old document, the

description may not be complete or the format of the solution description could be

different.

Even with advanced design tools, the design process typically produces a

description of the desired artifact, but leaves little or no indication of the design

rationale. We end up knowing what was designed, but often have no idea why it is

the way it is, what motivated the particular design, what alternatives were

considered and rejected, etc.

4) From time to time, we want to look at what and how we did in a previous project

in order to use the old experience in the new project. However, lifecycle

information, such as the information about requirements, design, components,

test, etc. is not captured properly and not stored in a medium which can provide

easy and structured access to the historical knowledge.

5

5) In industry, design information is normally captured in the form of specifications,

design meeting protocols and models. The models are either physical models

(prototypes, etc.), or abstract models, e.g., drawings or computer models. Such

models (both physical and abstract) only capture information from the physical

domain in the proposed framework. Accordingly, when presented with pure CAD

models, individuals other than the original designer have difficulty determining

the exact functions of each component and problems establishing the functional

relationships between the components.

6) Each design and analysis tool and method requires different types of inputs from

the product development knowledgebase. Each time a design or an analysis tool is

used, the input data has to be collected from product documentation and models

since the data is not structured or not readily available.

1.2 Objectives

The objectives of APDL are to guide the designers, developers, and other

members of a multi-discipline product development team throughout the development

effort as well as to help managers capture and manage the knowledge produced by the

development effort.

1) The proposed model shall use the AD method to improve the quality of the

preliminary design with the use of axioms in order to reduce the random searches

for solutions, to minimize design iterations, and to easily integrate other design

tools and methodologies with AD.

2) The proposed model shall extend the AD method to cover the whole PDL so that

all of the domain entities are developed systematically and the relationships

between the domain entities are identified and documented as well as any

decisions made or assumptions used in developing the domain entities and their

relationships.

3) The proposed model shall provide templates and guidance for documenting the

PDL knowledge to encourage and support sharing and reuse of design and other

domain entities such as test cases so that it is possible to easily search and access

6

the PDL knowledge for analysis, communication, re-engineering, maintenance,

and change impact analysis purposes.

1.3 Research Method

The information gathering for this research was conducted through literature

surveys and over eight years of personal industry experience in product development as a

Mechanical Engineer, Software Engineer, Technical Leader, and Project Manager. The

information gathered was used to analyze the existing design and product development

methodologies and practices and to develop a new product development lifecycle model.

The effectiveness and validity of the proposed approach can be tested and

validated through three ways: 1) conducting analysis from the historical perspective, 2)

performing case studies to provide both supporting and counter examples, and 3)

conducting design experiments.

The first approach is to make observations of previous designs, and compare the

results of the work with the expected output predicted from the claims of the proposed

approach. This approach requires extensive studies for large numbers of examples, some

of which have been done based on the proposed approach and others of which have been

done differently. The second approach can be done in two ways: 1) analyze the system

designed without using the proposed approach and prove it could have been done better

with the proposed approach, and 2) design a new system using the proposed approach

and show better/worse performance over competing approaches. The third approach is to

assign the same task to two different design groups, only one of which is familiar with

the proposed approach and compare the results.

In this research, the second method is used to validate the proposed approach. The

first method is not appropriate since a new approach is being proposed and there is no

example of its implementation. The third method is not feasible since it is very difficult to

setup a design experiment that can isolate and only investigate the development lifecycle

approach used. There are many other factors that can affect the performance of the design

groups.

7

The first approach of the second method is the most appropriate for this research

and it would be good enough to prove that the proposed approach does better than the

current approaches in the areas mentioned in the needs section.

1.4 Scope and Contribution of the Thesis

While so many product development lifecycle and design methodologies have

been developed for many decades and so much work has been done examining and

improving the existing methodologies, this thesis is unique in the following aspects:

• Extending the Axiomatic Design method to cover the whole product

development lifecycle by adding the test domain with the component test

and functional test cases characteristic vectors.

• Adding input constraint arrays into functional domain to manage, track,

and allocate the input constraints through the decomposition and

zigzagging process. Adding a new mapping matrix to map the customer

needs to the functional requirements and input constraints and another

matrix for capturing the decomposition and allocation of the ICs.

• Adding system components array into the physical domain to capture the

physical architecture and the relationships between the system components

and the other domain entities. The process variables are tied to the system

components instead of design parameters.

• The system architecture concept of AD is extended to include the system

component hierarchy.

• Providing full requirement traceability in both directions between the

product development domains.

• Capturing and documenting the details of the product development

knowledge in a systematic manner.

• Guiding the developer to first perform a top-down analysis to develop the

functional requirements, design solutions, and system components, and

then a bottom-up analysis to complete process variables and test cases.

8

1.5 Dissertation Overview

The following summarizes the content of each chapter in this dissertation.

Section 2 presents current practices and the results of literature survey on design

methodologies and development lifecycle. This section provides the necessary

background to understand the current problems and opportunities for improvement.

Section 3 explains the Axiomatic Product Development Lifecycle (APDL) model

in detail. This section also presents the benefits of APDL.

Section 4 presents the case study where the APDL model is applied to further

explain the usage of the model and to show the benefits of it.

Finally, Section 5 concludes the dissertation and discusses some future research

ideas.

9

CHAPTER II

II PRODUCT DEVELOPMENT LIFECYCLE

AND DESIGN METHODOLOGIES

This chapter is devoted to explain current practices and literature survey for

product development lifecycle models and design methodologies. The scope of the

literature survey was to learn the theoretical research about design and development

lifecycle as well as to learn what is currently practiced in the industry. The objective is to

find the needs that have not been addressed at all or not to the satisfaction of the industry.

Another objective was to find best practices in both theoretical research and current

practices to include in the new product development lifecycle model.

One simple definition of design is that a design process converts a need –

expressed as an abstract concept in terms of functionality – into a product (system,

device, service, or process) satisfying that need. This process is a complex one that

requires the designer to exercise initiative and creativeness as well as deploy a wide range

of skills, methodologies, and expertise in attaining a solution.

Different terms are being used in the literature and in the industry to describe the

process of product design and development such as “design process”, “product

development lifecycle”, “product development process”, and “engineering design

process.”

Product life begins when the product need is conceived and ends when the

product is no longer available for use, and may consist of phases such as need

assessment, requirement analysis, design (preliminary and detail design), production,

testing, deployment, operation and service and product end-of-life disposition (e.g.,

recycle and disposal).

The concerns and requirements for each phase and each aspect of the product life

should be considered during the requirement analysis and design phases so that the

design satisfies the significant these concerns and requirements. The Life-cycle

engineering (LCE) approach is developed as a decision-making method that considers

PRODUCT DEVELOPMENT LIFECYCLE

AND DESIGN METHODOLOGIES

10

performance, environmental and cost requirements for the duration of a product

[Wanyama, Ertas, Zhang, and Ekwaro-Osire, 2003].

Product development lifecycle (PDL) is a sub-set of the product life; starts with

need assessment and ends when the product or the product prototype is accepted by the

user or the product sponsor. The term “product development lifecycle” is used in this

research instead of “design process” because the design activity is just a part of the

product development lifecycle. The other activities that are part of the product

development lifecycle are quality control, configuration management, project

management, etc.

The terms “product development” or “design” can be defined in a variety of

different ways depending on the specific context and /or discipline of interest. They can

mean design and development of products, systems, processes, organizations, or software

architecture. However, any development process, whether the output is a product, service,

process, organization schema, business plan, or software, consists of the following six

steps:

1) Understanding the customers' needs

2) Defining the problem(s) that must be solved to satisfy these needs

3) Creating and selecting a solution(s)

4) Analyzing and optimizing the proposed solution as well as verifying the

solution against the customers' needs

5) Implementing the proposed solution (either a prototype or the final product)

6) Checking the resulting product against the customers’ needs

Some design methodologies, such as Axiomatic Design and Concurrent Design,

deals with most of the product development lifecycle activities whereas the other

methodologies, such as Robust Design and TRIZ, deal with the process of creating and

selecting a solution(s) to a stated need or analyzing and optimizing the proposed solution.

A product development lifecycle model depicts the significant phases or activities

of a product development from conception until delivery as well as the order in which

they are applied. The main objective of any product development lifecycle approach is to

11

provide designers and other development team members with notations and structures for

development activities such as analysis, synthesis, evaluation, and construction.

Engineers change the world and in turn they are affected by the very changes that

they created [Voland, 2004]. In the last 300 years since the start of the Industrial

Revolution, science and technology have reached an amazing level at an ever-

accelerating rate. The second revolution in the industrial environment started in the last

decades with the introduction of the automation and information technologies. These

technologies have been used to overcome the pressure caused by the increasing demand

on product customization (i.e. automobile, computers, etc.), on shorter and dependable

order delivery, on lowering manufacturing cost, on improving the quality and reliability

of the products, and on reduced product life cycle (i.e. mobile phones, computers).

Another factor that causes pressure is the increased product and process complexity

because more and more systems and products depend on multi-discipline knowledge and

technologies with development teams located in different locations around the country or

the world.

Engineers increasingly focus on the whole life of the product – from conception

of the product idea through its manufacture and use to its disposal – and in order to

satisfy the customers’ and environmental requirements successfully [Voland, 2004]. One

of the successes of this trend is that 76 percent of the average automobile is recycled,

according to the American Automobile Manufacturers Association. Product life factors

that may need to be addressed during product design include:

1. Testability/Inspectability

2. Reliability/Availability

3. Maintainability/Serviceability

4. Environment Friendliness

5. Upgradeability

6. Installability

7. Safety and Product Liability

8. Human Factors

12

Since the eighties, the performance of design projects has dramatically improved

due to the Concurrent Engineering approach [Ettlie, 1995]. Traditional functional barriers

have been broken down and project members have started focusing on concurrent

execution of all design tasks. The approach emphasizes that decisions made by marketing

will affect design, purchasing, or production decisions, and such decisions should not be

made in isolation from each other. Accordingly, engineering researchers have designed

and applied tools such as Design for Assembly (or DFX), Failure Mode and Effect

Analysis (FMEA), and Quality Function Deployment (QFD) in order to guide project

members to integrate the decisions made by various disciplines [Ulrich and Eppinger

2000]. Similarly, management researchers have highlighted the role of multi-disciplinary

teams in easing the exchange of a great amount and variety of information between

project members [Oosterman, 2001].

However, despite the advancements in science and technology, we are surrounded

by many technological and societal problems that have been created through poor design

practices or development lifecycle management [Suh, 2000]. Effective PDL models that

are based on scientific design theories and tools are becoming more and more important

in the industry for improving quality of products as well as reducing lead-times and costs

[Tate and Nordlund, 1996]

Brenda Reichelderfer of ITT Industries reported on their benchmarking survey of

many leading companies, "design directly influences more than 70% of the product life

cycle cost; companies with high product development effectiveness have earnings three

times the average earnings; and companies with high product development effectiveness

have revenue growth two times the average revenue growth."

There are major and minor design problems. All design problems cost money,

limit the usefulness of products, or delay the introduction of new products. The warranty

cost of some products is a significant percent of the selling price. Poorly designed

products and services requires maintenance and wastes valuable time and resources,

while some failures result in loss of property and even lives. In addition, development

13

projects may suffer from major delays, cost overrun, and in some cases total failures due

to poor designs [Suh, 2000].

Typical new product development projects undergo many cycles of the "design-

build-test-redesign-build-test" cycle. With this approach, requirements are analyzed and

decomposed while staying in the functional domain and the design decisions are made

quickly based on experience and empirical data of designers and engineers to reach the

80% completion level relatively quickly. However, later the development team faces the

consequences of poor requirements and design and considerable amount of time has to be

spent on rework instead of doing it right the first time. This is a result of the philosophy

that commits a lot of resources and time to a design that is not thoroughly developed and

communicated by the development team. Because of these conditions, companies spend

an order of magnitude more money and time in product development than necessary

[ADSI].

Many engineers have been designing their products (or process, systems, etc.)

iteratively, empirically, and intuitively, based on years of experience, cleverness, or

creativity, and involving much trial and error. This approach is very haphazard (i.e.,

lacking a definite plan, purpose, or pattern) and overly time consuming. Since it is

haphazard, experienced gained from such practices cannot be easily reapplied to other

similar development efforts. Although experience is important since it generates

knowledge and information about practical design, experiential knowledge alone is not

enough, as it is not always reliable, especially when the context of the application

changes. Experience must be supported by systematic knowledge of design [Suh, 2001].

The design documentation, even with advanced design tools, describes the final

design, but leaves little or no indication of the design rationale. We end up knowing what

was designed, but often have no idea why it is the way it is, what motivated the particular

design, what alternatives were considered and rejected, etc.

Documentation is a lot of work, and the value in doing it typically accrues to

someone else: the designer knows how the artifact works and why, so writing it all down

typically provides little personal benefit. It's those who come after who get the benefit,

14

hence the feeling among designers that rationales are more trouble than they are worth.

According to Söderman (1998), in most cases good design representations for large

systems either do not exist or they are not used to their full potential.

It is extremely important to have a design method that can produce a very good

system design description as a by-product of following the method in order to trace the

impact of design decisions on both local (component or subsystem) and system-wide

levels, since the real goal of the design effort is to optimize the performance of the

system and this may not necessarily mean optimizing the performance of each

component.

I will explain, in detail, the product development lifecycle and activities involved

in Section 2.1. Since the AD method is used as the base for this research, a detailed

description of Axiomatic Design is provided in Section 2.2. In Sections 2.3 and 2.4, some

other design methods are presented and they are compared and contrasted with the AD

method. Finally, I will touch on the relationship of design with creativity and with

computers.

2.1 Product Development Lifecycle

Since the early 1960s, many versions of product development lifecycle (PDL)

models (or system development lifecycle models, or design process models) have been

developed by authors. Some models are very brief with only three separate stages

(analysis-synthesis-evaluation) whereas others are decomposed into various

subtasks/phases/activities that are to be performed by the development team. Sometimes,

the discipline involved and the choice of the terms used determines the differences

between models.

A product development lifecycle model depicts the significant phases or activities

of a product development from conception until delivery as well as the order in which

they are applied. The main objective of any product development lifecycle approach is to

provide designers and other development team members with notations and structures for

development activities such as analysis, synthesis, evaluation, and construction in order

to produce high quality products that satisfy the customer needs.

15

Suh (1990) sees design as an interplay between what we want to achieve and how

we want to achieve it and defines the “design process” in terms of the four design

domains – customer, functional, physical, and process – and mapping between these

domains.

Ullman (1992) describes the “product lifecycle” (not product development

lifecycle) consisting of six phases; 1) specification development/planning, 2) conceptual

design, 3) product design, 4) production, 5) service, and 6) product retirement. The first

three phases constitute the “design process.” Ullman (1992) also recommends that the

last three phases of the product lifecycle should be considered during the “design

process”.

Ertas and Jones (1996) uses the term “design process” and defines this term as

“…begins with an identified need and concludes with satisfactory qualification and

acceptance testing of the prototype” and presented in Figure 2.1.

Ulrich and Eppinger (2000) use the name “product development process” and

define this process as “…the sequence of steps or activities which an enterprise employs

to conceive, design, and commercialize a product.”

The US Department of Defense (DOD) Instruction 5000.2 in Final Coordination

Draft, April 2000, describes the “project development lifecycle” as a series of acquisition

milestones and phases – 1) concept and technology development, 2) system development

and demonstration, 3) production and deployment, and 4) support.

Voland (2004) uses the name “the engineering design process” and decomposes

this process into five stages; 1) need assessment, 2) problem formulation, 3) abstraction

and synthesis, 4) analysis, and 5) implementation.

In the software discipline, many PDL approaches have been developed and have

been in use for decades. Some of the well-known PDLs are 1) Waterfall, 2) Spiral, 3)

Incremental and Iterative, and 4) Rapid prototyping [A Survey of System Development

Process Models, 1998].

16

Figure 2.1 – Design process model by Ertas and Jones (1996)

The Waterfall Model is the earliest method of structured software systems

development. The waterfall PDL is widely used although it has come under attack in

recent years for being too rigid and unrealistic since it assumes that each phase is

completed before proceeding to the next and also it does not meet the customer’s needs

quickly. The waterfall model is attributed with providing the theoretical basis for other

product development lifecycle models, because it most closely resembles a “generic”

model for software development [A Survey of System Development Process Models,

1998].

17

The “production” phase mentioned in some PDLs may not be necessary if

products are created in limited quantities.

The PDL models can be divided into two categories: activity-based and phase-

based [Evbuomwan, Sivaloganathan, and Jebb, 1996] as presented in Table 2.1.

The activity-based models present the PDL as repeated iterations of three

activities: analysis, synthesis, and evaluation. These activities are defined as [Jones,

1962]:

• Analysis: Deals with understanding the problem and generating the

requirement specifications.

• Synthesis: Deals with generating design solutions and choosing the an

ideal design solution.

• Evaluation: Deals with verifying the design solution against the

requirement specifications and constraints.

The phase-based models present the PDL in terms of sequential phases and tend

to emphasize the progression of the design implementation – physical embodiment [Tate,

1999]. In the model of Pahl and Beitz, the phases of the PDL are described as [Pahl and

Beitz, 2003]:

• Planning and clarifying the task: Suitable product ideas created and

selected based on the market, the company, and the economy. Then, the

requirement specifications and constraints are developed.

• Conceptual design: The principle design is developed in this phase by

identifying the essential problems, establishing the function structure,

searching for working principles and working structures and finally

evaluating the design against the technical and economic criteria.

• Embodiment design: The preliminary layout is developed and preliminary

parts list and production and assembly documents are created in this

phase.

• Detail design: The production and operation documents are created by

elaborating the detail drawings and part lists.

18

Table 2.1 – Some of the existing design process models [Evbuomwan, et al., 1996]

Activity-based Models Phase-based Models
Analysis
Synthesis
Evaluation

Planning and clarifying the task
Conceptual design

Embodiment design
Detail design

Archer
Cross
Harris
Jones
Krick

Marples
Wilson [Wilson, 1980]

Asimow
Clausing [Clausing, 1994]

French
Hubka

Pahl and Beitz [Pahl and Beitz, 2003]
Pugh [Pugh, 1991]

Ullman [Ullman, 1992]
VDI 2221 [VDI, 1987]

Watts

In all the PDL/design process models, there is iteration or feedback between the

specified phases/activities as a deeper understanding of the problem or the solution is

gained or deficiencies or problems are found.

Phase boundaries are defined so that they provide points for go/no-go decisions.

Typically, there are either or both peer reviews and customer reviews at the end of each

phase in order to ensure that the end result of the phase is aligned with the agreed-upon

requirements and also that the project is meeting performance, cost, and schedule

objectives.

Although so many development lifecycle and design processes have been

developed and have been in use for decades, we still have problems with managing the

development process, with meeting the set objectives, with satisfying the requirements.

Most of the development lifecycle approaches describes a set of activities/phases and

some prescribes patterns of activities. They may also provide the artifacts and their

templates/standards produced from these activities. There are very few design and

development lifecycle methodologies that also provide some structure and systematic

approach to capture and manipulate data used and produced by the development lifecycle

activities. The Axiomatic Design is one of such methods that provide a systematic

19

approach to design by introducing some axioms and theorems, and also concepts such as

domains, zigzagging, and design matrices.

The main phases of a product development lifecycle are (i) customer need

assessment, (ii) requirement analysis, (iii) design, (iv) implementation, and (v) test and

evaluation. There are some activities that are performed throughout the development

lifecycle such as requirement management, change management, quality assurance, and

project management (or product development lifecycle management). Requirement

management covers the customer need assessment and requirement analysis phases. The

phases and the aforementioned activities are explained in detail in the following sections.

2.1.1 Requirement Management

Requirements management can be defined as the process of eliciting,

documenting, organizing, and tracking changing requirements and communicating this

information across the stakeholders [Davis and Leffingwell, 1999]. Requirement

Management covers the phases of customer need assessment and requirement analysis as

well as requirements management activities that are carried out throughout the product

development lifecycle.

Requirements are features, functions, capabilities, or properties that a system must

possess. Requirements state the customer/end-user needs and solution constraints. The

traditional way of distinguishing requirements from design is that the requirements

represents what the system is supposed to have/do (what’s) whereas the design is how the

system will accomplish the what’s (how’s).

The IEEE Standard Glossary of Software Engineering Terminology (IEEE Std.

610.12-1990) defines five types of requirements in addition to functional requirements:

performance requirements, interface requirements, design requirements, implementation

requirements, and physical requirements.

One of the most important aspects of the product development lifecycle is to

develop an understanding of the true needs of the customer that must be satisfied by the

product [Hintersteiner, 2000]. The requirements are the foundation of a system and form

the basis for the rest of the product lifecycle activities such as design, manufacture, test,

20

and operation. Consequently, each requirement has a cost impact on the system. The

requirements are very useful for contractual purposes because they provide a checklist of

what the implementer must deliver.

It is vitally important for product development team to understand the impact of

changing customer needs on the requirements and rest of the product development

lifecycle activities and to manage them systematically since requirements often change

during the product development cycle [Hintersteiner, 2000; Do, 2004].

There are three main objectives of requirements management; one is to capture

the requirements right, the second one is to manage changing requirements, and the third

one is to align the system development lifecycle activities with the requirements to make

sure that the requirements are met and gold plating does not happen [Gumus and Ertas,

2004a; 2004b]. Achieving the first objective depends on the structure and effectiveness of

the requirements gathering and validation methodology whereas achieving the second

and third objectives depends on the ability to establish and maintain the relationships

among the elicited customer needs, the requirements and constraints derived from these

needs, and the subsequent artifacts in which these requirements are realized.

Successful Requirement Management requires use of requirement attributes that

are defined by the development and the management teams according to the project’s and

organizational needs. These attributes are used to plan, communicate and track the system

development activities throughout the lifecycle [Davis and Leffingwell, 1999]. Some

sample attributes are: customer benefit (ranking of the relative importance of the

requirements to the customer), effort (effort estimation for each requirement), priority

(determines which requirement is incorporated into the system first), verification method

(how to verify if the requirement is met), and status (approved, designed, tested, etc).

The functional requirements of the design may change dynamically as the

customer needs often change during the product development lifecycle. When there is a

change in the customer needs, it is very important for the product development team to

assess the impact of the change on the functional requirements and in turn on the design

and other activities in the development lifecycle such as manufacturing and testing.

21

Changes in requirements later in the development cycle can have a significant cost

impact on the system, even resulting in project cancellation. While some requirement

changes may be simple to incorporate and not significantly impact other parts of the

system, other changes may affect several parts of the design, often in unpredictable ways

[Hintersteiner, 2000].

Requirements traceability (RT), according to a widely accepted definition, is " the

ability to follow the life of a requirement, in both forwards and backwards direction, i.e.,

from its origins, through its development and specification, to its subsequent deployment

and use, and through periods of ongoing refinement and iteration in any of these phases”

[Gotel and Finkelstein, 1994].

RT is generally practiced in software development lifecycles and in manufacture

of high-reliability products and systems such as medical and aerospace. This important

practice is not widely known and implemented in other design disciplines. However, it

should be a vital part of any system development lifecycle to make sure product

development activities are aligned with the customer needs, in turn functional

requirements and constraints and the final product/service fully satisfies those needs.

Some of the benefits of requirement traceability are providing stakeholders with the

means to show compliance with requirements, maintain system design rationale, and

establish change control and maintenance mechanisms [Ramesh, Powers, Stubbs, and

Edwards, 1995]. In other words, RT is used to ensure continued alignment between

stakeholder requirements and various outputs of the system development process

[Ramesh and Jarke, 2001].

The RT can be divided into two parts [Gotel and Finkelstein, 1994]:

1) Pre-requirements traceability (pre-RT) refers to the ability to describe and

follow those aspects of a requirement's life prior to its inclusion in the

requirement specification document (i.e., System Subsystem Specifications,

Software Requirement Specifications) in both forwards and backwards

directions (i.e., requirements elicitation and refinement).

22

2) Post-requirements traceability (post-RT) refers to the ability to describe and

follow those aspects of a requirement's life that result from its inclusion in the

requirement specification document in both forwards and backwards

directions (i.e., requirements deployment and use).

During requirement allocation, all system components (hardware, software,

human-ware, manuals, policies, and procedures) created at various stages of the

development lifecycle are linked to requirements. Therefore, tracing requirements allows

developers to easily ascertain the impact of any changes.

There are many different views of traceability depending on the stakeholder’s

view of the system. To the customer, traceability could mean being able to ascertain that

the system requirements are satisfied. The developer's concern with traceability may be

how a change in a requirement will affect the system, what modules are directly affected,

and what other modules will experience residual effects. To a test engineer, traceability

means making sure that each requirement is being tested. Full requirements test coverage

is very hard without RT [Davis and Leffingwell, 1999].

Many organizations consider RT as a mandate, a contractual requirement to be

satisfied. Some organizations, on the other hand, view traceability as an important

component of implementing a quality system development and a must for survival

[Ramesh et al., 1995].

RT implementation has many benefits to the development lifecycle, including

providing stakeholder with a clearer picture of the system, and providing a tool to find

out any effect of a requirement change. RT also helps verifies that the user needs are

implemented and tested.

RT ensures customer satisfaction by providing a documented means by which to

prove to the customer that all of the stated requirements are met, not a single requirement

is missed out and that the job is completed. Especially, in the process of developing large,

complex systems with hundreds, or even thousands of requirements, RT is the only tool

to make sure that each and every requirement is achieved.

23

RT also helps in change management and is a fundamental component of quality

assurance and sound requirements management [Davis and Leffingwell, 1999]. Since

requirement changes during development and maintenance phases cannot be avoided, RT

is a must for successful system development and maintenance lifecycle. RT is the only

sure way of finding how the requirement change will affect the system.

Another case where RT data would be very useful is re-engineering or re-design

efforts. RT data, in these cases, allows the developers to understand the system without

the need to re-hire the engineers worked for the initial project or digging through

unstructured documents to find out the requirements, design solution, and the

relationships between those.

The high investment cost and additional time to implement RT could be deterrent

factors. However, RT will reduce the total product lifecycle cost due to development of

higher quality product, and reduction in the maintenance lifecycle cost, and cost of any

re-engineer efforts in the future. RT is also a great tool for managing large, complex

systems and increasing user demands.

2.1.1.1 Customer Need Assessment

Customer need assessment, also called requirement elicitation, is a collaborative

activity involving many stakeholders such as users, developers, and customers as well as

environmental and regulatory bodies. The need assessment approach depends not only on

the diversity and experience levels of these cross-disciplinary sources of requirements,

but also on the diversity of the problem being formulated, which ranges from a fully

understood system to a new, novel one [Christel and Kang, 1992].

The success of the product development lifecycle very much depends on

capturing the true needs of the customer that must be satisfied by the design and proved

by the verification and validation activities. It is therefore essential that a complete, but

minimum set of requirements be established and documented in a requirements

specification (RS) document early in development and the requirements should be

communicated and agreed upon by all stakeholders [Davis and Leffingwell, 1999].

24

In order to achieve highly quality requirements and to assure all no requirements

are missed, first, all the stakeholders should be identified, all the external interfaces

should be defined, and operational concepts or use cases should be developed as well as

systematic models and approaches should be used for both capturing and managing the

system requirements.

Some of the techniques used for identifying customer needs are:

· Structured workshops

· Brainstorming or problem-solving sessions

· Interviews, surveys/questionnaires

· Observation of work patterns

· Observation of the system’s organizational and political environment

· Technical documentation review

· Market analysis

· Competitive system assessment

· Reverse engineering

· Simulations and prototyping

There are several methodologies to gather customer needs, such as Quality

Function Deployment (QFD) [Akao, 1990] and House of Quality [Hauser and Clausing,

1988].

 Rzepka (1989) decomposes the customer need assessment process as follows:

i) Identify the relevant parties that are sources of requirements. The party

might be an end user, an interfacing system, or environmental factors.

ii) Gather the “wish list” for each relevant party. This wish list is likely to

originally contain ambiguities, inconsistencies, infeasible requirements,

and untestable requirements, as well as probably being incomplete.

iii) Document and refine the “wish list” for each relevant party. The wish list

includes all important activities and data, and during this stage it is

repeatedly analyzed until it is self-consistent. The list is typically high

25

level, specific to the relevant problem domain, and stated in user-specific

terms.

iv) Integrate the wish lists across the various relevant parties thereby

resolving the conflicts between the viewpoints. Consistency checking is an

important part of this process. The wish lists, or goals, are also checked for

feasibility.

v) Determine the nonfunctional requirements, such as performance and

reliability issues, and state these in the requirements document.

Sometimes, customers express design solutions instead of expressing their needs

or they may not have the skills or background to express themselves in appropriate terms.

In addition, the customers may not be knowledgeable enough to understand what is or is

not feasible from a technological and financial point of view. Therefore, the underlying

needs should be identified whenever customers express a design solution in order not to

limit the creativity in design and limit the design alternatives unnecessarily. Also, a great

deal of effort needs to be spent to understand what the customers actual need, rather than

what they say they need.

Extra attention should be given to identify the "unstated" or "unspoken" needs.

Use cases, observation of work patterns, function tree, or prototyping can be used to

identify the “assumed” or “unspoken” needs.

Research by Leveson (1995) has concluded that the overwhelming majority of

incidents and accidents in large-scale systems tend to result from poorly specified

requirements. Among other observations, Leveson has noted that the requirements

frequently overlooked includes minimizing boredom in cases where repetitive tasks are

necessary, considering involuntary reactions during crisis situations, and understanding

potential ways that the system can be misused. These are just few of the

unstated/unspoken requirements. They were either assumed/implied requirements and not

explicitly documented or treated as low-priority requirements.

Once customer needs are elicited, they then have to be clarified and organized to

start the requirement analysis phase.

26

2.1.1.2 Requirement Analysis

Customer needs should be translated into functional requirements that the design

must satisfy and constraints that bound the design since customers do not necessarily

articulate all of the requirements and they even do not make the distinction between

requirements, constraints, and design solutions [Friedman, Hintersteiner, Tate, and

Zimmerman, 2000].

The requirement analysis phase produces the agreed-upon and baselined

functional requirements, input constraints, and verification requirements from the

customer needs. According to Ertas and Jones (1993):

“If the requirements are too stringent, the project cost will escalate and (possibly)

no supplier will be found that is willing to bid on the contract to provide the item

in question. If the requirements are too lax, the overall system requirements may

not be met, which could lead to dire consequences for the overall project. An

additional problem with loose requirements is that they end up being tightened

with greatly increased cost, difficulty, and ill will between the supplier and the

customer. The importance of establishing valid design requirements is thus

apparent… A good specification will minimize problems of interpretation that

could surface later and result in disagreement with the supplier, possibly with

negative impact on the entire project.” (pp. 14-15)

The system requirements should be documented in a requirement specifications

document and the requirements should be communicated and agreed upon by all

stakeholders [Davis and Leffingwell, 1999]. The design activities and decisions as well as

test activities are based on this requirement specifications document since it tells what the

system is supposed to do. Industrial firms often use Marketing Requirements

Specifications (MRS), software firms use System (or Software) Requirements

Specifications (SRS) and some other forms of requirements specifications documents are

used in other industries to document the requirements for the product (or software,

process, organization, etc.).

27

The requirements should not be defined in terms of existing designs and products;

otherwise, different variations of the product will be developed since the opportunity to

come up with alternative ways of satisfying the underlying need is lost. Therefore, the

focus should be on the functionalities that are desired in a solution and the requirements

should be expressed in terms of these functionalities [Voland, 2004].

A good requirement specification document should provide the following benefits

to the customer, supplier (or contractor) and the members of the development team [IEEE

Std 830, 1998]:

• Establishes the basis for agreement between the customers and the suppliers

on what the system/product should do,

• Reduce the development efforts by reducing rework due to requirement

changes,

• Provides a bases for estimating costs and schedules,

• Provides a baseline for validation and verification, and

• Provides a structured mean for communication.

There are several methodologies to analyze customer needs, such as Quality

Function Deployment (QFD) [Akao, 1990] and House of Quality [Hauser and Clausing,

1988].

2.1.1.3 Current Problems with Requirement Management

There are many problems related to requirements management, including

problems in defining the system scope, in establishing understanding among the

stakeholders, and in dealing with the changing requirements. These problems may lead to

poor requirements and longer lead time, or the cancellation of system development, or

else the development of a system that is later judged unsatisfactory or unacceptable, has

high maintenance costs, or undergoes frequent changes [Christel and Kang, 1992].

Another difficulty is with assuring that the needs are satisfied by the design since

there is usually not a one-to-one relationship between the customer needs and the

functional requirements that the design must satisfy. Therefore, a great deal of effort must

28

be spent by product designers to translate the customer needs into appropriate functional

requirements and input constraints for the design.

The lack of a systematic framework to trace the impact of changing requirements

and design decisions can then lead to poor design with incompatible or even conflicting

functions.

Research by Leveson (1995) has concluded that the overwhelming majority of

incidents and accidents in large-scale systems tend to result from poorly specified

requirements such as missing out specifications of the system behavior during abnormal

operation conditions, untestable specifications, or requirements that are assumed to be

intuitive but never explicitly documented.

The DoD Software Technology Plan [DoD 91] states that “early defect fixes are

typically two orders of magnitude cheaper than late defect fixes, and the early

requirements and design defects typically leave more serious operational consequences.”

Often, the requirement specification documents are thick, not well organized and

mainly a random mixture of customer needs, functional requirements, constraints, design

parameters, process variables, and other requirements such as project or contractual

requirements. One of the main problems with this type of documentation is that

incorporating the design parameters and process variables or any type of design solution

can unnecessarily complicate and constraint the design solution and can kill creativity

and opportunities for innovative solutions.

All these problems with the requirement management ultimately causes the

project to miss the cost-schedule-performance targets because not capturing all the

requirements in a structured manner results in these specific problems:

• Increase cost and schedule: Effort is spent during design and implementation

trying to figure out what the requirements are.

• Decrease product quality: Poor requirements cause the wrong product to be

delivered or the scope is reduced to meet schedule or cost constraints.

29

• Increase maintenance effort: Lack of traceability increases the effort to

identify where changes are required, especially as knowledgeable personnel

leave.

• Create disputes with the customer/client: Ambiguity causes differences in

expectations and contractual issues.

2.1.2 Design

The design phase is the phase during which the detail design of the system,

subsystem, components, and interfaces are created, documented, and verified to satisfy

the established requirements.

If the product to be design is a complex one, there could be two sub-phases of

design (i) preliminary design, and (ii) detail design. In the preliminary design sub-phase

design alternatives are created and one of them would be selected for further analysis,

optimization, and verification in the detail design sub-phase.

Some of the activities included in the preliminary design are the search for

commercial-off-the-shelf (COTS) components, inclusion of company standards,

determination of make/buy decisions, acceptance and test strategy, and use of trade

studies. These activities, combined with the requirements from the previous phase, form

the basis for several outputs, such as the subsystem specifications, system interfaces, test

plans, system concepts (prototypes), and implementation concepts. The outputs of the

preliminary design sub-phase are discussed at the preliminary design review (PDR) in

order to make a go/no-go decision to continue on to the detailed design phase [LAI,

1998].

The detail design sub-phase includes completion of system or product design,

production/manufacturing planning, prototype development, and final design testing and

evaluation. The output from this phase is a set of implementation-ready design

documentations and plans. The detail design is reviewed and discussed at the critical

design review (CDR) with the customer to make a go/no-go decision to continue on

30

implementing the design. At this point, the design is baselined. According to Ertas and

Jones (1993):

“In most design processes of any significant magnitude, a design freeze is

implemented at some point prior to completion. This is the point at which the

design process is formalized and design changes are placed under strict and

formal control, often by some sort of configuration control board, [which]

normally include[s] membership representing all of the design disciplines, project

management, the customer, safety, quality control, and other staff functions, as

appropriate. The point in the overall design process at which the design is frozen

is determined by customer requirements, by the need to control costs and

configuration, by the need to inject greater discipline into the process, and by the

need to forceably [sic] implement increased coordination among all the

participants in the program.” (pp. 19)

2.1.3 Implementation/Manufacturing

In the implementation phase, the design is implemented/manufactured to produce

the product to satisfy the established requirements. During this phase,

manufacturing/production/implementation knowledge is applied to the design and

development of the product including analyses of design producibility and production

operations; application of manufacturing methods, tooling and equipment; control of the

introduction of engineering changes; and employment of manufacturing cost control

techniques.

Implementation consists of:

i) Producing and testing the components,

ii) Assembly of the components to form sub-systems and testing the sub-

systems,

iii) Integration of the all the components to form the product.

31

2.1.4 Test and Evaluation

Testing and evaluation (validation and verification) activities are performed

during and at the end of a product development to continuously verify and validate the

product or the product components. Each component and subsystem of the system should

be tested before they are integrated into another subsystem or to the system. The system

should also be tested to make sure that the overall system satisfies all the system level

functional requirements as well as all the constraints.

The objective of the test and evaluation activities is to verify that all the artifacts

satisfy the allocated requirements and constraints and to eliminate technical and

manufacturing risks prior to high-rate production or delivery.

Test and evaluation involves evaluation of components, subsystems, as well as

multiple pre-production versions, or prototypes, of the product. Typically, there are two

classes of prototypes. Early (alpha) prototypes are designed using the intended materials,

but flexible manufacturing processes, and later (beta) prototypes are created using the

correct materials and processes, but with a different assembly scheme than the final

product. The beta prototypes are generally used to answer questions regarding

performance and reliability [Ulrich and Eppinger, 2000].

This phase can account for "two thirds of the development cost." For example, to

qualify for extended twin-engine operations, the Boeing 777 flight-test program was "the

most extensive in Boeing history, a total of 7,400 hours" [Condit, 1996]. Similarly, the

software code for a military aircraft that had 2,140 requirements in the test plan spent

nearly four years in testing [Chase, 2001]. However, the biggest reason why this phase

may take considerable amount of time lies in the earlier phases of the product

development lifecycle. Some of the possible reasons for a longer test phase are:

i) Requirements are not identified and/or documented properly and the

resulting design does not fully satisfy the requirements or some of the

requirements are missing.

ii) Design constraints are not identified, documented and allocated properly.

32

iii) Design is not documented properly and the design intend is not

communication properly between design and development teams.

iv) Test and verification concerns are not considered in the requirement and/or

design phase.

v) Proper unit and integration tests are not performed for the components and

subsystems.

vi) The problems detected in this phase may require changes in the requirement

specifications or design, and any rework at this point cost considerable

amount of time and money.

2.1.5 Change Management

Change Management is the processes that define how changes are managed

throughout the development life cycle. Change Management includes management of

change requests, validation and evaluation of change requests, adjudicating and

approving change requests, and implementation of the change request. Changes could be

in requirements, design, implementation, or testing,

When the customer requirements change during the design effort, it is generally

not feasible to restart the design process from scratch, so new and modified functional

requirements and constraints must be incorporated into the existing design as the changes

occur. The lack of a systematic framework to trace the impact of changing requirements

and design decisions can lead to inaccurate impact analysis, estimates and a breakdown

of proper communication between the stakeholders. One design team may not be aware

of changes to another group’s requirements, even though they are significantly impacted

[Hintersteiner, 2000].

2.1.6 Project Management

Project management is the process of directing and coordinating human and

material resources throughout the project life cycle using management techniques to

achieve established objectives of scope, quality, time, cost and stakeholder satisfaction.

33

The Project Management Institute [PMI] defines project management as “The

application of knowledge, skills, tools and techniques to project activities to meet the

project requirements.” Project management knowledge and practices are best described in

terms of their component processes that can be placed into five process groups (initiating,

planning, executing, controlling and closing) and nine knowledge areas (project

integration management, project scope management, project time management, project

cost management, project quality management, project human resource management,

project communications management, project risk management and project procurement

management) [ASQ].

In its simplest form the project life cycle consists of four major periods:

1. Concept: where the project concept as a need solution is selected and

defined, overlaps with customer need assessment and requirements analysis

phases of product development lifecycle.

2. Development or Definition: where the concept is verified and developed

into a workable plan for implementation, overlaps with requirement analysis

and design phases of the product development lifecycle.

3. Implementation: where the implementation plan is carried out, overlaps with

the implementation phase of the product development lifecycle.

4. Closeout: where the project process is completed and documented, and the

finished product is transferred to the owner/user, overlaps with system

testing.

2.2 Axiomatic Design (AD)

The AD method is explained in detail in Suh (1990) and Suh (2001). Many case

studies where AD is applied to solve a problem in industry are presented in Suh (2001),

Do and Suh (2000), Hintersteiner (2000), Melvin (2003), and Nordlund (1996). In this

section, a brief overview of AD, mainly1 from Suh (2001) and other resources, is

provided and some benefits of applying AD in product design are discussed in order to

1 If not noted otherwise, the information presented in this section is from (Suh, 2001).

34

familiarize the reader with AD method. Understanding AD is very important to

understand the impact and contribution of this dissertation.

The ultimate purpose of the AD is explained in Suh (2001) as “... to establish a

scientific base for design and to improve design activities by providing the designer with

a theoretical foundation based on logic and rational thought processes and tools.”

The AD provides a systematic and logical method for deriving, documenting and

optimizing designs and helps avoid traditional design-build-test-redesign cycles for

design solution search and for determining the best design among those proposed [Suh,

2001]. Design architectures resulting from AD analysis provide frameworks for

implementation planning, risk assessment, risk mitigation and robust design analysis

[ADSI].

The AD provides a framework for describing design objects at all levels of detail.

Therefore, it allows the engineers and other stakeholders to quickly understand the

relationships between the intended functions of an object and the means by which they

are achieved [Hintersteiner, 2000].

Following the AD approach means that the designer will proceed with a design

through repeating a series of activities [Lee, 1999]:

i. Identify functional requirements in a solution-neutral environment

ii. Develop design solutions

iii. Determine design matrices and make sure that the design axioms are satisfied

iv. Check design consistency with respect to higher-level design decisions

v. Repeat steps 1-4 at the next level until the leaf-level DPs are developed.

The AD helps creativity by demanding clear formulation of design objectives

through the establishment of functional requirements (FRs) and constraints (Cs). It also

provides criteria for good and bad design to eliminate the bad designs as early as

possible, and thus enabling the designers to concentrate on promising ideas. The AD also

provides a systematic flow from creation of concepts to detailed design by formalizing

the decomposition process of requirements and design solutions.

35

Axiomatic design provides traceability of design logic when changes are

introduced during the development phase and throughout the lifecycle of the product

[ADSI].

The Axiomatic Design method implements a process where engineers, designers

and managers think functionally first, followed by the innovative creation of physical

embodiment. The Axiomatic Design also provides a systematic way of satisfying many

functional requirements (FRs) at the same time without introducing coupling of functions

and creating integrated physical systems. The AD provides means of decomposing

higher-level FRs and physical embodiments (called design parameters, DPs) until the

creation of leaf-level FRs and DPs that can be implemented to construct the system

according to the resulting design decision architecture [ADSI].

2.2.1 General AD Concepts

The AD method originates from the understanding that design is an interplay

between what we want to achieve and how we want to achieve it. Designers can use all of

their existing design tools and software with AD and efficiently arrive at a successful new

design, or diagnose and correct an existing design.

The AD process is centered on the satisfaction of functional requirements (FRs),

which are defined as the minimum set of independent requirements that characterize the

design goals. The design must satisfy the FRs, and this is done by creating a system that

uses design parameters (DPs) to affect the behavior such that the FRs are satisfied.

There are four main concepts in AD: (i) domains, (ii) hierarchies, (iii) zigzagging,

and (iv) design axioms. These concepts are explained in the following sections.

2.2.1.1 AD: Domains

The fundamental concept of AD is that of domains, one for each kind of design

activity: customer domain, functional domain, physical domain, and process domain.

36

Figure 2.2 – Axiomatic Design Domains

For each pair of adjacent domains, the domain on the left represents "what we

want to achieve," while the domain on the right represents the design solution of "how we

propose to achieve it." The contents of each domain are explained in Table 2.2.

Table 2.2 – Axiomatic Design Domain Contents

Customer
domain

The needs (CNs) or attributes that the customer seek in a product or system

Functional
domain

Functional requirements (FRs) and constraints of the design solution

Physical
domain

Design parameters (DPs) of the design solution

Process
domain

Process variables (PVs) that characterizes the process to produce the DPs

For example, in the customer domain, suppose the customer needs to preserve

food. There are several means to accomplish this in the functional domain, such as

canning, dehydrating, or cooling the food. From these choices the designer selects

cooling and then decides on a refrigerator in the physical domain. The process domain

describes how to manufacture the refrigerator.

37

Some of the definitions associated with the domains in Axiomatic Design are

given in Table 2.3.

Table 2.3 – Axiomatic Design Definitions [Suh, 2001]

Functional

requirement

Functional requirements (FRs) are a minimum set of independent

requirements that completely characterize the functional needs of the

design solution (i.e., software, organization, etc.) in the functional

domain.

Constraint Constraints (Cs) are bounds on acceptable solutions. There are two

kinds of constraints: input constraints and system constraints. Input

constraints are imposed as part of the design specifications. System

constraints are constraints imposed by the system in which the design

solution must function.

Design

Parameter

Design parameters (DPs) are the elements of the design solution in the

physical domain that are chosen to satisfy the specified FRs.

Process

variable

Process variables (PVs) are the elements in the process domain that

characterize the process that satisfies the specified DPs.

The Cs can be classified based on the source of the constraints:

1. Input Constraints are specific to the overall design goals (i.e., cost, safety

regulations, system environment, etc.) and imposed externally by the

customer, by industry standard, or by government regulations.

2. System constraints are specific to a given design. They are the result of a

choices and tradeoffs made elsewhere in the design. All higher-level design

decision act as constraints at lower levels. For example, the choice to use a

particular robot for an application may lead to limitations on where that robot

can reach, and thereby restrictions as to where accessible stations need to be

placed. In addition, vibrations induced by the robot may dictate requirements

for vibration isolation of other components in the system. If a different robot

38

or another type of mechanism is selected, such requirements may not be

necessary.

Friedman et al. (2000) categorizes the constraints as (i) critical performance

specifications, (ii) interface constraints, and (iii) project constraints.

Constraint can have different impact on the design and development process.

They can be used to filter alternative solutions or they can generate FRs. They may affect

all the DPs, such as the project constraints, or they can be tied to specific sub-FRs.

The design process starts with identifying the customer needs (CNs). Then,

functional requirements (FRs), design parameters (DPs), and constraints are derived from

the CNs. If a customer need specifies existence of particular subcomponents or a part of

the design solution, it is considered as a DP [Suh, 2001]. The top level FRs that are

derived from the CNs should be explicitly stated in solution neutral terms (i.e., without

thinking about existing designs or what the design solution should be) to avoid imposing

unnecessary design constraints and therefore encouraging creativity in finding innovative

solutions.

The FRs must be stated with expected environmental variation, customer usage

variation, and required useful life before disposal as requirements of the system so that

accommodation to handle these noise variables is included in the design.

After establishing the top-level FRs and DPs, the decomposition starts in order to

achieve a design that could be implemented. During the decomposition, the independence

axiom is used to make sure that an acceptable design is achieved. When the detailed-

design is completed and FR and DP hierarchies are obtained, the second axiom,

information axiom, and the constraints are used to find the best design solution.

Table 2.4 shows how design tasks from different fields can be described in terms

of the four design domains. Since all designs fit into these four domains, all design

activities can be generalized in terms of the same principals. Thus, generalized design

principles can be applied to all design applications and the design issues that arise in

these four domains can be considered systematically and, if necessary, concurrently [Suh,

2001]. Nordlund (1996) used the AD approach for business planning and proved that the

39

AD is applicable in non-engineering disciplines too. In business planning the AD

terminology is changed to discipline specific terms: FRs were renamed to Goals, DPs

became Strategies and PVs were changed to Activities.

Table 2.4 – Characteristics of design domains for various designs [Suh, 2001]

 Customer
Domain {CA}

Functional
Domain {FR}

Physical
Domain {DP}

Process
Domain {PV}

Manufacturing CA that
customers
desire

FRs specified
for the product

DPs that can
satisfy FRs

PVs that can
control DPs

Materials Desired
performance

Required
properties

Microstructure Processes

Software Attributes
desired in the
software

Output
specification of
the program
codes

Input variables,
Algorithms,
Modules,
Program codes

Subroutines,
machine codes,
compilers,
modules

Organizations Customer
satisfaction

Functions of
the
organization

Programs,
Offices,
Activities.

People and
other resources
to support
programs.

Systems Attributes
desired of the
overall system

Functional
requirements
of the system

Machines,
components,
subcomponents.

Resources
(human,
financial, etc.)

Business Return on
Investment
(ROI)

Business goal Business
structure

Human and
financial
resources

Some other limited experiments were also conducted applying the AD framework

to marketing problems (both academic examples conducted on Harvard business schools

cases and industry problems conducted with AGA AB). The results from these

experiments indicate that the AD framework is also applicable in designing marketing

strategies [Nordlund, 1996].

Decisions in one domain are mapped into the domain on its right. In the earlier

example, the need in the customer domain for preserving food was mapped into cooling

the food in the functional domain, and then this functional requirement was

40

conceptualized as a refrigerator in the physical domain. This shows how the "What" in

the left domain is mapped into the "How" of the right domain: Food preservation

("What") maps to cooling ("How"); in turn, cooling ("What") maps to refrigerator

("How"); and lastly, refrigerator ("What") maps into the manufacturing process ("How").

The mapping between the domains is represented by two design matrixes: a

product design matrix, D, which shows the relationships between FRs and DPs, and

process design matrix, B, which shows the relationships between DPs and PVs. This is

an example of a product design matrix:

 DP1 DP2 DP3

FR1 X O O

FR2 X X O

FR3 X O X

An X or O in a cell indicates whether the column’s DP affects the row’s FR or

not. In this matrix, DP1 affects all three FRs, while DP2 affects only FR2, and DP3

affects only FR3. Instead of a simple X or O, each cell can contain the mathematical

relationship between the FR and the DP. The design matrices contain a wealth of

information about the design and are central to the application of AD.

The possible questions to ask to determine the value of the design element are:

“Shall DPj affect FRi?”, “Shall a change in DPj affect FRi?”, or “Shall the choice of DPj

affect the choice of DPi?” [Lee, 1999]. At higher levels of decomposition, answering

these questions may not be easy and the answers may not be accurate since the DPs at

higher levels may not provide enough information. Also, the answers to the questions at

higher levels depend on some assumptions or design decision related to the further

decomposition of the DPs.

The mapping between the FRs and DPs can be summarized in Equation 1, where

the {FR} is the FR vector, {DP} is the DP vector, and [D] is the product design matrix.

{FR} = [D] {DP} (1)

41

Equation (1) is written in a differential form as

{dFR} = [A] {dDP}

and the elements of the product design matrix are given by

Aij = δFRi / δDPi

For a linear design, Aij are constants; for a nonlinear design, Aij are functions of

the DPs.

For an n-DP design, Equation (1) can also be written, in terms of its elements, as

∑
=

=
n

j
jiji DPAFR

1

The other equation used in AD is the process design equation that summarizes the

mapping between the DPs and the PVs, where the {PV} is the PV vector in the process

domain.

{DP} = [B] {PV} (2)

2.2.1.2 AD: Hierarchies

The second main concept of AD is hierarchies, which represent the design

architecture. Beginning at the highest level, the designer selects a specific design by

decomposing the highest-level FRs into lower-level FRs. This can be done once the

highest level DPs are chosen. Decomposition proceeds layer by layer to ever-lower

levels, leaf level, until the design solution can be implemented. The decomposition

should be taken down to levels where the DPs are physical parts (i.e., components,

geometries), computer programs (i.e., classes, flow charts), and specifications (i.e.,

tolerances, limits, etc.). That means that the DPs at the leaf level should be something

that already exist and either needs no re-design or needs no further decomposition.

The hierarchical structure that emerges from decomposition is known as the

system architecture. Through this decomposition process the designer establishes

hierarchies of FRs, DPs and PVs.

42

Continuing the refrigerator example, the highest-level FR, FR1, is cooling the

food. Since the highest-level DP is a refrigerator, the next-level FRs would be:

FR1-1 Keep the food within a specified temperature range, T±∆T

FR1-2 Maintain a uniform temperature within the box

2.2.1.3 AD: Zigzagging

The zigzagging is the third main concept in AD and it describes the process of

decomposing the design into hierarchies by alternating between pairs of domains. After

the top-level FRs and DPs are developed to provide enough design information at the

conceptual level, they should be decomposed until the design can be implemented. The

decomposition is performed by zigzagging between the domains, starting from the

“what” domain to the “how” domain. The FR and DP hierarchies are established to

represent the product design structure through the decomposition process.

In many organizations, functional requirements or requirement specifications are

decomposed without zigzagging and by remaining only in the functional domain.

However, if requirement decomposition is done this way, the designers either have to

think of an existing design and end up re-specifying the design that already exists or

make some design assumptions without properly documenting them and end up with a

product design that is hidden in the requirement specifications. Therefore, when the FRs

are defined in a solution neutral environment, we have to "zig" to the physical domain,

and after proper DPs are chosen, we have "zag" to the functional domain for further

decomposition.

The FR1 (cooling food) of the refrigerator example is decomposed into FR1-1

(keeping food within a specified temperature range) and FR1-2 (keeping temperature

uniform). These lower-level FRs are valid only for the DP we chose, a refrigerator; if,

instead, we had chosen to can the food, the lower-level FRs would be different.

Therefore, the designer follows a procedure of zigzagging between the “What” and

“How” domains to the lowest level of the hierarchies [ADSI].

43

During the decomposition, the independent design axiom should be applied to the

product design matrix to make sure that for each level of design, an uncoupled or a

decoupled design matrix is obtained.

At the end of zigzagging when a set of FRs has been formulated and possible sets

of DPs have been synthesized, the two design axioms are applied to evaluate the

proposed designs. The product design matrix, D, is used in this evaluation. The

Independence Axiom is also applied to the process design matrix to make sure that an

uncoupled or a decoupled process design matrix is obtained.

In many cases, the CNs cannot and need not be decomposed since they are often

stated in terms of highest level needs. However, in the future when product customization

is important to satisfy customers, zigzagging can be performed so that the customer can

select their desired functions among the available FRs.

The system design can be said to be completed once the requirements and

constraints for the lowest-level (leaf-level) DPs are specified well enough to either

implement (produce/manufacture/code/etc.) or to procure the DPs.

2.2.1.4 AD: Design Axioms

The fourth main concept of AD is the two design axioms. Axioms are truths that

cannot be derived but for which there are no counterexamples or exceptions. The design

axioms are:

Axiom 1 – The Independence Axiom: Maintain the independence of FRs: In an

acceptable design, the DPs and the FRs are related in such a way that a specific DP can

be adjusted to satisfy its corresponding FR without affecting other FRs.

Axiom 2 – The Information Axiom: Minimize the information content: Among

alternative designs which satisfy Axiom 1, the best design has the minimum information

content which means the maximum probability of success. The Information Axiom

provides a quantitative measure of the merits of a proposed design as well as the

theoretical bases for design optimization and robust design.

The information content of a design of an entire system is defined as:

Isys = - log2 P{m} (3)

44

Where P{m} is the joint probability that all m FRs are satisfied by the design.

The Information Axiom states that the design that has the smallest I is the best

design, since it requires the least amount of information to achieve the FRs.

These design axioms were created by identifying the common elements that are

present in all good designs and then consolidating and synthesizing the common elements

into two design axioms through a logical reasoning process. The historical background of

the design axioms is given in The Principles of Design [Suh, 1990]. The following

questions were asked [Suh, 2001]:

• How was such a big improvement made in a process?

• How was the process created?

• What are the common elements in a good design?

There are three possibilities for the design matrix based on the Independent

Axiom. It can be a diagonal matrix (uncoupled design) or a triangular matrix (de-coupled

design) or any other matrix (coupled design). In an uncoupled design there is one-to-one

relationship between the FRs and DPs. In a de-coupled design the FRs can be satisfied if

the DPs are properly sequenced. As a result, the order of adjusting the DPs in a decoupled

design is important. A coupled design has no guaranteed point where the FRs can be

satisfied.

An everyday example of a coupled design is a typical

water faucet. The two FRs are "control the temperature"

and "control the flow rate." The two DPs are the hot- and

cold-water handles. This design is coupled because it is

impossible to adjust either DP without affecting the other

FR: Each handle affects both temperature and flow rate.

45

In the above example, the two FRs, "control the

temperature" and "control the flow rate" are independent.

One DP does not affect the other so this design is

uncoupled.

In the above example, the typical faucet is well understood by most users, and

they are able to make the necessary adjustments with little difficulty. However, if the

temperature and flow requirements were to change more rapidly, or require more

precision, then it is more likely that this design is unsatisfactory.

In the design matrix, each column is a design element, while each row is a

function. The cell shows whether the column's design element affects the function of that

row: If so, the cell has an X, if not there is no X. According to the theory, a design is

independent - that is, contains no circular dependencies - when all the Xs are inside the

triangle.

For water faucets, the desired functions are to adjust the flow rate and temperature

of the water. This dependency map of the single-lever faucet shows that the up-and-down

motion adjusts flow rate only, while side-to-side motion adjusts just the temperature. In

contrast, both valves of the dual-valve design affect both flow rate and temperature.

Therefore, the dual-valve design is not independent because one X is outside the triangle.

Dual knob faucet:

 Hot valve Cold valve
Adjust flow X X
Adjust temp X X

Single lever arm faucet:

 Hot valve Cold valve

Adjust flow X 0

Adjust temp 0 X

46

The design matrix is a second order tensor like stress, strain, and moment of

inertia. However, there is one big difference between the design matrix and these other

second order tensors. These other tensors can be changed through coordinate

transformation to convert any matrix into a diagonal matrix. The diagonal elements of the

diagonal matrix are invariant such as principal stresses in the case of stress tensor.

However, the coordinate transformation technique cannot be applied to design equations

to find the invariant (i.e., the diagonal matrix), since the design matrix typically involves

physical things that are not amenable to coordinate transformation. In other words,

mathematically the design matrix can always be transformed into a diagonal matrix, but

the diagonal elements may not have any physical significance [Suh, 1990].

Functional independence required by the Independence Axiom is often

misunderstood as physical independence. However, Axiom 1 requires that the functions

of the system be independent from each other, that is, each function can be achieved

without affecting other functions. The second axiom suggests physical integration as a

way of decreasing the information content of the design as long as the functional

independence is maintained.

The case studies in Suh (2001) show that the performance, robustness, reliability,

and functionality of products, processes, software, systems, and organizations were

significantly improved when these two design axioms are satisfied.

It is very important to know that the design matrix may satisfy the first axiom at

conceptual design levels, however, the design decisions at lower levels ultimately

determine if the system design satisfies the first axiom. Therefore, full design matrix that

represents all FRs and DPs should be formed at each level of decomposition and make

sure that the functional independents is still maintained.

At each level of decomposition, master or multi-level design matrix is formed to

evaluate the consistency of the design as well as to ensure that the higher level design

decisions and assumptions are still valid [Lee, 1999]. A sample master design matrix is

shown in Table 2.5.

47

Table 2.5 – Sample Master Design Matrix

 DP1.1 DP1.2 DP2.1 DP2.2 DP2.3 DP3

FR1.1 X O O O O O

FR1.2 X X O O O O

FR2.1 O X X O O O

FR2.2 O X O X O O

FR2.3 O X X O X O

FR3 O X O O O X

The un-shaded portion of the master design matrix is design matrixes for

FR1/DP1 and FR2/DP2 decomposition as well as the A33 element of the first level design

matrix. The importance of the master design matrix comes from the analysis of the un-

shaded portion since this portion indicates if the lover-level DPs are consistent with the

higher-level design intent and assumptions. If any one of the DP2.x affects any one of the

FR1.x, then the earlier design decision would be violated. If lower level DPs violate the

higher level design, then three actions can be taken: 1) modify the lower level DPs, 2)

impose constraints or specify conditions that prevents the DPs unwanted affects, or 3)

revise the higher level design matrix provided that the revised design matrix is still

uncoupled or decoupled. If case of latter, if the revised matrix is not acceptable, then the

higher-level DPs should be revisited to achieve another acceptable design.

Note that the order of FRs in a decoupled design generally indicates the order of

design importance, since the FR/DP in the top row should be the first to be decomposed

[Tate, 1999]. An explanation should be provided for each off-diagonal “X” in the design

matrix as well as for “O” if this is only valid under certain conditions [Hintersteiner,

1999].

The template for documenting the decomposition and zigzagging process

suggested by Hintersteiner (1999) is shown in Figure 2.3.

48

Figure 2.3 – The decomposition template from Hintersteiner (1999).

The top row indicates the index at this level, where the “ϕ” indicates the full

index of the parent FR/DP and “#” refers to the index in later rows. The parent FR and

DP are included in the table in order to place the FRs and DPs at this level in context with

their parent FR/DP.

The process subsystems perform the physical processing of operands such as

producing the parts, manipulating data, etc. The transport subsystems perform

transportation of operands through the system either between the process subsystems or

across the interfaces to external systems such as receiving parts, moving parts, etc. The

command and control algorithms (CCA) are used to schedule and coordinate the process

and transport subsystems and the support frameworks bind the process and transport

subsystems with the CCAs to form a coherent system [Hintersteiner, 1999].

There can be an arbitrary but non-zero number of process FRs at each level of the

hierarchy depending upon the specific design. There will always be one control FR and

one support/integration FR. The last column in the table is used for codes for verification

method that will be used to ensure that the DP is satisfying its corresponding FR. The

possible verification methods may be testing (T), inspection (I), demonstration (De),

drawings (Dr), analysis and simulation (A), or proven technology (U).

49

Multiple DPs can exist for an FR for two reasons: 1) to make a selection between

them, or 2) FR utilizes them at different times. Multiple DPs can be documented as a list

in the template. However, since each alternative DP may have different sets of sub-FRs

and constraints, and a separate decomposition should be provided for each alternative

[Hintersteiner, 1999].

Hintersteiner (1999) defines two types of DPs, system and component, and

describes the decomposition for these DPs. The system type DP decomposition proceeds

with its own sub-process FRs as well as requirements to schedule and coordinate these

process FRs and integrate its own subassemblies. Thus, as the process functions are

decomposed top-down, the full system logic and system support framework is built both

top-down and bottom-up, due to the decoupled nature of the control and support FRs at

every level of the hierarchy.

When the decomposition reaches the component type DPs, the control and

support type FRs are not required since the (sub)system that the component belongs to

provides these functions. The system representation presented by Hintersteiner (1999)

does not apply to the decomposition of the component type DPs.

Tate (1999) extends the AD method in the areas of decomposition (includes the

concepts of hierarchies and zigzagging) and project control by providing description of

the activities that take place during design combined with decision-making tools and

workflow paths to provide additional decision-making guidance to designers. There are

four types of inconsistencies that can arise between layers of decomposition [Tate, 1999]:

1) Inconsistent FRs: Sub-FRs do not provide the functionality of the parent FR

2) Inconsistent DPs: Sub-DPs do not provide sufficient capacity or have been

physically integrated in a way that violates the functional independence

indicated at the parent level.

3) Inconsistent DM: The relationship indicated by design matrix at one layer is

not the same as indicated at the next level. For example, it is determined that

there exist a relationship between sub-FRs and sub-DPs of parent FR and DP

whereas there are no relations between the parent FR and DP.

50

4) Inconsistent Cs: The sub-DPs do not meet the Cs carried down from their

parents.

Melvin (2003) suggests using angle brackets to indicate dynamic FRs/DPs and

underlining the leaf level FRs/DPs since distinction between dynamic and static FRs is

critical to the design process. He also suggests using words such as “control” or “set” for

dynamic FRs and “maintain” for fixed FRs.

2.2.2 AD System Architecture

The system architecture (SA) is captured in AD as sets of functional requirements

(FRs), design parameters (DPs), constraints, and design matrices (DMs) as well as

description of FRs/DPs, justification of the design matrix and visual representation

[Hintersteiner and Tate, 1998; Lee, 1999; Friedman et. al., 2000]. It is the aggregation of

all of the design decisions during the decomposition and zigzagging.

The design documentation is generated during the system architecture

development in the AD method. The system architecture can be used as a communication

tool between different design teams and other stakeholders. Furthermore, at the beginning

of a redesign effort for a next-generation product, the system architecture can be

reexamined, so that the reasoning behind the choices of certain DPs along with an

understanding of the constraints under which the designers had worked can be more

clearly understood [Hintersteiner, 1999].

A SA should be developed for every systems to capture the performance

requirements and components of the system in a logical, coherent, and comprehensive

manner, to facilitate communication between engineers, managers, and other stakeholders

including the customer, and to provide good technical documentation of the design

decisions made and the reasoning behind them [Hintersteiner, 1999].

Since the system architecture highlights the relationships between the functional

requirements, design parameters, and constraints, it can be used to evaluate the impact of

proposed design changes as well as functional requirement and constraint changes.

Therefore, it makes it possible for the product designers and customers to make more

informed decisions as to whether or not to pursue the proposed changes.

51

The strength of the system architecture is that, in addition to the operational flow

of the system, it also captures the order in which design decisions have to be made, and

indicates how the alteration of one part of the system can potentially impact other parts

[Tate, 1999].

The SA can also be used in diagnosis of system failure, in job assignment and

management of the development team, distributed systems, and system design through

assembly of modules [Suh, 2001].

There are three ways in AD to visualize the system architecture: tree diagram,

module-junction diagram, and flow chart. Although they represent the same information,

they emphasize different aspects of the system [Suh, 2001]

2.2.2.1 Tree Diagram

A tree diagram just shows the hierarchical structure of the system in terms of FRs,

DPs, and PVs and corresponding design and process matrices [Suh, 2001]. A sample tree

diagram representation of FRs and DPs is shown in Figure 2.4.

Figure 2.4 – A sample tree diagram for the FR and DP hierarchies

52

2.2.2.2 Module-Junction Diagram

The model-junction diagram is created to present the system architecture more

efficiently than the tree diagram. It is based on the module definition and presents the

type of each design matrix as well as the system’s hierarchical structure.

In axiomatic design a ‘module’ is defined as the row of the design matrix that

yields the FR of the row when it is multiplied by the corresponding DPs (i.e., data).

Therefore, the module-junction diagram represents the FR tree, DP tree, and the design

matrix. The design matrix ensures that the modules are correctly defined and located in

the right place in the right order [Do and Suh, 2000]. A sample module-junction diagram

is presented in Figure 2.5.

Figure 2.5 – A sample module-junction diagram [Lee, 1999]

There are three types of junctions that can appear in the module-junction structure

diagram, as specified in Table 2.6.

Table 2.6 – Junction Types

Symbol Type Design Type Flow Diagram Representation
S Summation Uncoupled Parallel summation of modules
C Control Decoupled Sequential processing of modules
F Feedback Coupled Feedback loop of sequentially processed

modules

2.2.2.3 AD Flow Diagram

The flow diagram shows the interaction between modules. Once the module-

junction structure diagram is developed, it can be used to generate the flow diagram,

which shows how design information must flow through the system design process. The

53

flow diagram represents the order in which the modules must be designed in order to

satisfy the overall functional requirements of the system. The determination of parallel,

sequential, and feedback loops for the information flow is dictated by the junctions in the

module-junction structure diagram.

Although the sequence that the design should take place is contained in the design

equations, it is useful to represent the system in a flow diagram format to help visualize

the design process.

A sample 2-FR design with two levels of decomposition (two design equations)

and the corresponding flow diagram are shown in Equations i and ii and Figure 2.6

⎭
⎬
⎫

⎩
⎨
⎧
⎥
⎦

⎤
⎢
⎣

⎡
=

⎭
⎬
⎫

⎩
⎨
⎧

2
10

2
1

2221

11

DP
DP

AA
A

FR
FR

 (i)

⎭
⎬
⎫

⎩
⎨
⎧
⎥
⎦

⎤
⎢
⎣

⎡
=

⎭
⎬
⎫

⎩
⎨
⎧

−

−

2.1
1.1

0
0

2.1
1.1

2.12.1

1.11.1

DP
DP

A
A

FR
FR

 (ii)

Figure 2.6 – Flow diagram representation of Equations i and ii

All of the arrows in Figure 2.6 without a source represent the DP associated with

the module being supplied.

The flow diagram can be the link between axiomatic design and simulation

provided that the design matrix elements are all mathematical expressions.

Different applications of the flow diagram in software development are explained

in Section 5.2.2 of Suh (2001). Suh (2001) claims that the flow diagram can be used in:

• Diagnosis of software failure

• Software change impact analysis

54

• Job assignment and management of the software development team

• Development of distributed systems

• Development and integration of software-hardware systems

• Defining the human-machine interface

2.2.3 AD Benefits

A detailed list of the benefits of the AD approach is provided in the following

sections since the AD is the base for the PDL proposed in this research, and most, if not

all of the benefits of AD are inherited to the proposed PDL. The ADSI web site has a

similar list, which is used as the source of the list presented here.

2.2.3.1 Benefits to Designers

For a new design effort, the designer designs in a systematic way by following the

AD process, completing prerequisite tasks before continuing to the next stage.

The designer saves time by:

• reducing random searches for solutions,

• minimizing or eliminating design iterations, and

• using current design tools more effectively.

And the designer produces better designs by:

• selecting the best design among good alternatives,

• optimizing the design properly, and

• verifying the design against explicit requirements.

One additional advantage of following AD is to have a documented design as a

by-product of the design for communication between stakeholders, for troubleshooting,

and for reuse.

For diagnosing an existing design, the use of axiomatic design highlights

problems such as coupling and makes clear the relationships between the symptoms of

the problem (one or more FRs not being achieved) and their causes (the specific DPs

affecting those FRs).

55

When an existing design needs an engineering change or an upgrade and if

axiomatic design was used for the design, then the axiomatic design identifies all of the

areas affected by the contemplated changes. As a result, less time is spent on determining

the impact of the change and unintended problems are avoided.

2.2.3.2 Benefits to Managers

The AD provides the following benefits to the managers:

• Helps identify tasks, and task sequence,

• Allows to check the progress against the requirements,

• Allows to select the best option, identify effects throughout the system, and

document changes when managing engineering change requests, and

• Enables better management of communication between the stakeholders by

use of a common language.

2.2.3.3 Benefits to Firms

The firm gains a competitive advantage when its customers’ needs are satisfied.

AD helps make sure that the needs are satisfied. If, for some reason, some of the initial

set of FRs and Cs are not satisfied, the firm can explain the tradeoffs of specific

alternatives to the customer.

Since designers avoid trial and error approach to find the right design, time to

market, another source of competitive advantage, is shortened.

Three types of cost can be lowered: R&D, cost of goods sold (COGS), and

support.

1) The R&D cost is less because designers spend less time designing the product

initially and making engineering changes after the product is released.

2) COGS drops when products are not coupled and therefore are easier to

assemble and test.

3) Support costs are lower because products that are not coupled install and set

up faster, and typically require fewer warranty repairs.

56

Axiomatic design reduces both technical risk and business risk since the

Information Axiom ensures that the chosen design has minimum information content,

which is defined as the most technically probable to succeed. Business risk is also

reduced because:

• products satisfy customers’ needs since FRs are derived from those needs.

• upgrades can be done quickly and effectively.

2.3 AD with Other Methodologies

There are a number of techniques and methods currently used in product design

and development, such as, QFD, TRIZ, and robust design. The use of these and some

other design and analysis techniques is very consistent with the AD. The designer can

follow the AD method and uses the various other techniques when appropriate. In fact,

the structure and hierarchy generated through AD can help the designer apply these

techniques easier and better. For example, the AD helps the designer avoid mistakes such

as unknowingly attempting to optimize a coupled design. The other methods generally

deal with a certain portion of the product development process such as requirement

analysis, identifying a solution to a specified need, optimizing the proposed design, etc.

However, the AD method starts with customer needs assessment and traces requirements

and design decisions throughout the domains defined in the preceding section and the AD

establishes the system architecture.

Chen (1999) states that the AD is the method that illustrates design process and

design method clearly whereas other design methods such as optimization design, robust

design, reliability design, and design for X, may belong to a kind of method for mapping

between a special design requirement and its design solution in the process of AD. He

also says that the AD method guides designers to design the product with all other useful

design methods and AD does not replace them.

Suh (2001) explains the difference between AD and other design methodologies

as:

1) Axiomatic design deals with principles and methodologies rather than simply

algorithms or methodologies. Based on the two design axioms, it derives

57

theorems and corollaries, and also develops methodologies based on

functional analysis and information minimization to achieve robust design.

2) Axiomatic design is applicable to all designs: products, processes, systems,

software, organizations, materials, and business plan.

3) All methodologies, including the Taguchi method, must satisfy the design

axioms for them to be valid. For example, the Taguchi method is valid only

on designs that satisfy the Independence Axiom. So far, there seems to be no

contradiction between Altshuller's methodologies and the design axioms.

4) The Taguchi method does instruct how to make design decisions. It is a

method of checking and improving a finished design.

5) Both axiomatic design and the Taguchi method lead to robust design for

designs that satisfy the Independence Axiom.

6) Although many efforts are being made in industry to improve a bad design

using optimization techniques, the design that violates the Independence

Axiom cannot be improved. Optimization of bad designs leads to optimized

bad designs.

Mohsen and Cekecek (2000) suggest that the AD decomposition can define an

integrated framework to improve quality practices such as Failure Mode and Effect

Analysis (FMEA), Parameter Diagrams (P-Diagram), Testing strategies, and Functional

Requirements Specifications (FRS) as shown in Figure 2.7.

58

Figure 2.7 – AD with Other Quality Tools [Mohsen and Cekecek, 2000]

Smith (2001) suggests integration of structural thinking methods such as AD and

TRIZ with Six Sigma and Design for Six Sigma (DFSS) in order to make the quality

efforts more effective and more productive with less effort because these methods

address design foundation flaws.

Melvin (2003) suggests that the AD can be used to a certain level of detail design

and then another design method can be used to proceed to complete the detail design. He

points out that some of the benefits of the AD would be missed by doing so, but it allows

systems to incorporate some of the valuable AD concepts without supporting the full

overhead of the axiomatic design process.

In this section, some of the other currently used design methodologies are

described and how AD helps designers use these methods easier and better is explained.

The Axiomatic Design web site has a figure (Figure 2.8) that shows how other

design methodologies fit together with the Axiomatic Design method [ADSI].

59

QFD

TRIZ

QFD

SPC

FMEA

TRIZ

QFD
DoW

Robust
Design

DFA, DF…
FMEA

TRIZ

QFD

Systems
Engineering
Validation/
Verification

Customer
Domain

Functional
Domain

Physical
Domain

Process
Domain

Figure 2.8 – Other Design Tools within AD Framework [ADSI]

2.3.1 AD and TRIZ

TRIZ is a Russian acronym that stands for Theory of Inventive Problem Solving

and originated by Genrich Altshuller (1926-1998). Altshuller recognized the need for a

scientific approach to invention after listening to scientists and inventors speak of design

as “sudden enlightenment.” They complained that it was impossible to control the

creative process much less understand what it is and how it comes about. According to

Altshuller, failure to control the creative process results in many inventions coming too

late, frequent mistakes, and inventors dreaming up unrealistic solutions [Altshuller,

1988].

 In the course of the study of some 400,000 inventions as depicted in patent

descriptions, Altshuller noticed a fundamentally consistent approach used by the best

inventors to solve the problems. At the heart of the best solution existed an engineering

conflict, or a contradiction. And the best inventions solved these contradictions without

compromise. Altshuller had discovered that when an engineering system is reduced to

reveal the essential system contradictions, inventive solutions eliminated the

contradictions completely.

The concepts, tools and methods used in TRIZ are [Hu, Yang, and Taguchi,

2000a and 2000b]:

60

i) Ideality Concept: Every system performs functions that generate useful

effects (desirable functions) and harmful effects (undesirable functions).

One of the goals of design is to maximize the useful functions of a system.

The ideality concept has two main purposes. First, it is a law that all

engineering systems evolve to increasing degrees of ideality. Second, it tries

to get the problem solver to conceptualize perfection and helps break out of

psychological inertia or paradigms.

ii) ARIZ: ARIZ is the Russian abbreviation for Algorithm of inventive problem

solving and it is a non computational algorithm that helps the problem

solver take a situation that does not have obvious contradictions and answer

a series of questions to reveal the contradictions to make it suitable for

TRIZ.

iii) Contradiction Table: This is one of the earliest TRIZ tools to aid inventers to

show how to deal with 1263 common engineering contradictions.

iv) Inventive Principles: These are the principles in the contradiction table.

There are 40 main principles and approximately 50 sub-principles as

solution pathways or methods of dealing with or eliminating engineering

contradictions.

v) Separation Principles: A technique to deal with physical contradictions. The

most common separation principles can take place in space, time, or scale.

vi) Laws of Evolution of Engineering Systems: Altshuller claims that

engineering systems evolve according to patterns and possible

advancements for the system can be predicted and even accelerated when

these patterns are understood and used to analyze an existing system.

vii) Fundamental Analysis and Trimming: The functions of a system are

identified and analyzed with the intend of increasing the value of the

product by eliminating parts while keeping the functions.

viii) Substance Field Analysis: The substance-field (S-F) analysis is a TRIZ

analytical tool for modeling problems related to existing technological

61

system. Every system is created to perform some functions. The desired

function is the output from an object or substance (S1) caused by another

object (S2) with the help of some means (types of energy, F). “Substance” is

used in TRIZ literature to refer to some objects of any level of complexity

from a single item to a complex system. The action or means of

accomplishing the action is called a field. S-F analysis looks at the

interaction between substances and fields to describe the situation in a

common language.

Figure 2.9 – S-field

In the figure, S1 and S2 are substances and F is a field. Substance S1 is an article,

material, or object to be controlled or processed. S2 is a tool or an object to control or

process the article S1. F is a kind of energy, which is used for control or interaction. So

the S-field means that an "energy" (F) acting on a "tool" (S2) to modify a "material" (S1).

There are 76 standard substance-field solutions in the TRIZ patent database.

Substance-field analysis and the standard solutions are used to solve problems with

existing systems to identify which of the three elements are missing and how to complete

the system [Hu et al., 2000a].

TRIZ is a very useful method for creative problem solving. However, planning

and designing products involves multiple requirements, multiple functions, multiple

contradictions, while TRIZ problem solving methods are effective for single problems.

Therefore, the use of TRIZ in product design must involve transformation of complex

into simple problems.

Therefore combination of AD and TRIZ will combine the advantages of both

approaches to successfully manage complexity while creating innovate solutions to

62

complex problems. This is because the AD approach has a wider scope as a process

model, covering the whole design process from task clarification to detail design as well

as systems design, while TRIZ focuses on solving the inventive part of a design problem.

Tate and Nordlund (1995) state that one of the complementary properties of AD

and TRIZ is that while AD points out when interdependencies are harmful and can easily

visualize interdependencies between several variables, TRIZ lacks this property.

However, once the conflicting interdependencies are identified, Altshuller provides a set

of tools to resolve it— something Suh’s method lacks.

When a designer has selected an FR and a contradiction and wants to identify

alternative DPs, TRIZ can be helpful in generating alternatives.

Nordlund (1996) suggests this hypothesis about the integration of AD and TRIZ:

Working within the proposed framework, the theory of inventive problem solving

provides a synthesis tool complementary to the analysis rule provided by the

independence axiom within the proposed framework. More specifically, when

dealing with the design of a mechanical system in the proposed framework,

Altshuller’s principles for resolving technical contradictions can sometimes be

applied to resolve a situation where a design parameter (DP) or a process

variable (PV) does not meet a constraint.

Nordlund (1996) proves his hypothesis by giving an example of how AD and

TRIZ can be integrated to find the optimum solution in Section 6.4. Both Tate (1999) and

Suh (2001) also state that AD and TRIZ are complimentary to each other.

Mann (2002) suggests that AD has much to offer TRIZ in terms of better

understanding of both the hierarchical nature of design and the need to pay due attention

to the inter-connections which exist between successive hierarchical layers.

2.3.2 AD and QFD

Yoji Akao (1990) defines QFD as "a method for developing a design quality

aimed at satisfying the consumer and then translating the consumer's demands into

design targets and major quality assurance points to be used throughout the production

phase."

63

The Quality Function Deployment or “House-of-Quality” approach to product

development was originated in 1972 at Mitsubishi’s Kobe shipyard in Japan [Prasad,

1996]. Yoji Akao and Shigeru Mizuno are widely regarded as the father of QFD and his

work led to its first implementation at the Mitsubishi Heavy Industries Kobe Shipyard in

1972. Later, Toyota introduced the House of Quality to identify and prioritize the

customer needs and relate them to engineering characteristics, benchmark them against

competitors’ products, establish important engineering characteristics, and the important

areas for improvement [Suh, 2001]. The achievements made by Toyota through

application of QFD between 1977 and 1984 included a reduction in product development

costs by 61%, a decrease in the development cycle by one third and the virtual

elimination of rust related warranty problems [Sullivan, 1986].

QFD is a systematic, team-based approach that links specific design attributes

with the needs of the customer. The "voice of the customer" is the term to describe these

stated and unstated customer needs or requirements. The voice of the customer is

captured in a variety of ways such as direct discussion, interviews, surveys, focus groups,

customer specifications or the Internet. Understanding of the customer needs is then

summarized in a product planning matrix or "house of quality". These matrices are used

to translate higher level "what's" or needs into lower level "how's" - technical

characteristics to satisfy these needs.

The matrix tool also serves as a means of facilitating objective – rather than

subjective – decision-making, acts as a repository of team knowledge and serves as a

springboard for continuous improvement ideas [Prasad, 1996].

In addition to the "House of Quality" matrix, QFD utilizes "Seven Management

and Planning Tools" which are used in many of its procedures:

1. Affinity diagrams: Used by a team to organize and gain insight into a set of

qualitative information, such as voiced customer requirements. Building an

Affinity Diagram involves the recording of each statement onto separate

cards, which are then sorted into groups with a perceived association. A title

card that summarizes the data within each group is selected from its members

64

or is created where necessary. A hierarchy of association can be achieved by

then sorting these title cards into higher-level groups.

2. Relations diagrams or Interrelationship Di-graphs: Used to discover priorities,

root causes of problems and unstated customer requirements.

3. Hierarchy tree or Tree Diagram: Illustrates the structure of interrelationships

between groups of statements, but is built from the top down in an analytical

manner. It is usually applied to an existing set of structured information such

as that produced by building an Affinity Diagram and is used to account for

flaws or incompleteness in the source data.

4. Matrices and tables: The matrix is a tool that lies at the heart of many QFD

methods. By comparing two lists of items using a rectangular grid of cells, it

can be used to document a team's perceptions of the interrelationships that

exist, in a manner that can be later interpreted by considering the entries in

particular cells, rows or columns. In a prioritization matrix the relative

importance of items in a list and the strength of interrelationships are given

numerical weightings (shown as numbers or symbols). Tables are also used in

QFD to study the implications of gathered or generated items against a

specified list of categories.

5. Process Decision Program Diagrams (PDPC): PDPC are used to study

potential failures of new processes and services.

6. The Analytic Hierarchy Process (AHP): AHP uses pair-wise comparisons on

hierarchically organized elements to produce an accurate set of priorities.

7. Blueprinting: Used to illustrate and analyze all the processes involved in

providing a service.

There are many slightly different forms of House of Quality matrix. The general

format of the "House of Quality" is made up of six major components that are completed

in the course of a QFD project as shown in Figure 2.10:

1. Customer requirements (HOWs): a structured list of requirements derived

from customer statements.

65

2. Technical requirements (WHATs): a structured set of relevant and measurable

product (design) characteristics that should exist in the design, manufacturing,

assembly, and service process to meet the customer requirements.

3. Planning matrix: illustrates customer perceptions observed in market surveys.

Includes relative importance of customer requirements, company and

competitor performance in meeting these requirements.

4. Interrelationship matrix: illustrates the QFD team's perceptions of

interrelationships between technical and customer requirements. An

appropriate scale is applied, illustrated using symbols or figures. Filling this

portion of the matrix involves discussions and consensus building within the

team and can be time consuming. Concentrating on key relationships and

minimizing the numbers of requirements are useful techniques to reduce the

demands on resources.

5. Technical correlation (Roof) matrix: used to identify where technical

requirements support or impede each other in the product design. Can

highlight innovation opportunities.

6. Technical priorities, benchmarks and targets: used to record the priorities

assigned to technical requirements by the matrix, measures of technical

performance achieved by competitive products and the degree of difficulty

involved in developing each requirement. The final output of the matrix is a

set of target values for each technical requirement to be met by the new

design, which are linked back to the demands of the customer.

66

Figure 2.10 – House of Quality Matrix

Although most QFD analyses use only the house of quality, it is possible to

cascade matrixes to provide a trail from the customer requirements to the process

parameters that need to be controlled to meet the needs as proposed by Hauser and

Clausing (1988). This is illustrated in Figure 2.11.

67

Figure 2.11 – Cascading QFD Matrixes or the Four-Phase QFD Model

In Figure 2.11, the first matrix (House of Quality or Product Planning) matched

the customer’s requirements as whats against the design features (the hows) intended to

meet the needs. These hows become the whats of the next matrix, which charts design

features against hows which are the parts selected to implement them. The parts selected

then become the whats of the third matrix, plotted against the hows of the processes used

to create the parts. Finally, the processes become the whats of the last matrix, where the

hows are the process parameters which must be controlled. Thus, the cascaded matrixes

translate the customer requirements to a set of process parameters to be controlled.

Product planning matrix is considered as the most important of the four matrices.

It is employed as an assessment and planning tool providing a graphic representation of

customer requirements, design parameters, and perceived and real differences between

products manufactured in-house and those of the identified customers.

This cascading approach is very similar to the AD approach but it does not have

the design axioms and other theorems and corollaries associated with the axioms.

Advantages and disadvantages of applying QFD are listed in Table 2.7 [Christel

and Kang, 1992; and Stagney, 2003].

68

Table 2.7 – Advantages and Disadvantages of QFD

Advantages of QFD Disadvantages of QFD
• Emphasizing designing for quality by

focusing on the customer’s needs
• Promoting teambuilding
• Improving cross-functional

communication
• Addressing high priority items early
• Preserving knowledge in the QFD

documents (promoting reuse)
• Reducing cost through decreased start-

up problems
• Shortening product development time

(in part by the virtual elimination of
late engineering changes)

• Enhancing design reliability
• Increasing customer satisfaction

• More work must be done in the planning
stages.

• The QFD method does not indicate the
process by which the decomposed
customer requirements and product
control characteristics are derived.

• The QFD method does not provide
stopping conditions on the
decomposition of customer
requirements, i.e., the ideal granularity
of customer requirements is not
specified.

• Applying QFD and subsequent analysis
is very labor intensive and they are not
typically updated on a continual basis
once completed.

• It is difficult to assess the impact of any
potential trade-offs or to perform
sensitivity analyses due to the complex
structure of QFD.

With QFD, the designers gather information from customers about their

requirements and the relative importance of each. This information helps the designer to

choose which FRs must be present and which may be safely ignored.

QFD has been used to aid the process of defining FRs after the customer needs

and the possible functional requirements are correlated. Experience plays an important

role in defining FRs, since qualitative judgment plays a major role in assessing the

customer needs.

Suh (2001) claims that the QFD method may be an effective tool for re-design of

an existing product, but to develop a completely new original design, the FRs must be

defined in a solution neutral environment.

69

2.3.3 AD and Robust Design

A robust design is expected to perform its intended function under all operating

conditions (different causes of variations) throughout its intended life without necessarily

eliminating noise factors (disturbance factors that cause system functional variability)

[Mohsen and Cekecek, 2000]

Robust design method is the general term used to describe a process initiated by

Taguchi as quality engineering [Taguchi, 1986]. Taguchi aimed to reduce production

variance by creating a quality loss function, and optimizing the product to minimize the

loss function. The methods have been expanded and developed, and are commonly

termed robust design or Taguchi methods today [Park, 1996]. The premise of robust

design is that by consciously considering the noise factors (environmental variation

during the product's usage, manufacturing variation, and component deterioration) and

the cost of failure in the field, the Robust Design method helps ensure customer

satisfaction. Robust Design focuses on improving the fundamental function of the

product or process, thus facilitating flexible designs and concurrent engineering.

An overwhelming majority of product failures and the resulting field costs and

design iterations come from ignoring noise factors during the early design stages. The

noise factors crop up one by one as surprises in the subsequent product delivery stages

causing costly failures and band-aids. These problems are avoided in the Robust Design

method by subjecting the design ideas to noise factors through parameter design.

The Robustness Strategy uses five primary tools:

i) P-Diagram is used to classify the variables associated with the product into

noise, control, signal (input), and response (output) factors. The P-Diagram

integrates several ideas of the robustness process, such as signal, noise,

control factors, and noise (uncontrollable) factors, in a graphical form. Figure

2.12 shows the format of a P-Diagram.

70

Figure 2.12 – P-Diagram format

The noise factors are the parameters/factors that are beyond the control of the

designer. Parameters that can be specified by the designer are called control

factors.

ii) Ideal Function is used to mathematically specify the ideal form of the signal-

response relationship as embodied by the design concept for making the

higher-level system work perfectly. The ideal function is a mathematical

description of the energy transformation within the system.

iii) Quadratic Loss Function (also known as Quality Loss Function) is used to

quantify the loss incurred by the user due to deviation from target

performance.

iv) Signal-to-Noise Ratio is used for predicting the field quality through

laboratory experiments.

v) Orthogonal Arrays are used for gathering dependable information about

control factors (design parameters) with a small number of experiments.

The Robust Design optimizes a given design concept or solution to increase the

robustness. However, this approach does not provide any process for system design and

it focuses on only one requirement at a time. A problem might arise when a design has to

satisfy two requirements simultaneously, such as designing a car door to seal completely

and close easily where a coupling exists between these two functional requirements.

The quality and effectiveness of Robust Design greatly depends on the selection

of an appropriate system output characteristic. However, this selection process, currently,

has the same problem as the current design practices, both are more like an art than

System Signal Response

Noise Factors

Control Factors

71

science. Several research articles [Hu et al., 2002, Mohsen and Cekecek, 2000]

recognized this weakness of the Robust Design approach and they suggested Axiomatic

Design principles as a scientific base for Robust Design.

Hu et al. (2002) developed several new approaches to enhance Robust Design by

using TRIZ and AD principles and they successfully applied and verified one of the new

approaches in a case study in a large automotive company.

Mohsen and Cekecek (2000) demonstrate that the output of AD functional

decomposition can be used as inputs to the parameter diagram (P-Diagram) of the robust

design analysis. The AD can be used to formulate the P-Diagram of a system. The

functional decomposition (mapping and zigzagging) produces the required inputs for the

P-Diagram.

• Each functional requirement (FR) (or Design Range) is the signal

• The actual output of the system (system range) is the response,

• The design parameters (DPs) that are used to satisfy the FR are the control

factors

• The coupling in the design is a noise factor, the internal noise factor (the other

noise factors to consider are external environment, piece-to-piece variation,

effect of time, and customer usage).

Noise factors such as manufacturing variations, aging, customer usage,

environmental conditions and system interfaces, are used in functional testing to simulate

the real world [Mohsen and Cekecek, 2000]. The same noise factors should be used in the

optimization process to make the design more robust.

The AD method currently addresses the robustness by the two design axioms and

the stiffness concept. The independence axiom results in products with reduced internal

interaction by achieving functional independence. The information axiom makes sure that

the design with highest possibility of success is selected. Also, the design alternative with

lower stiffness – the ration of FR to DP – is more robust.

Melvin (2003) extends the AD method and proposes a strategy where the major

sources of noise are identified and then specifically targeted during the product

72

conceptual design. He lists several strategies to make the design more robust; such as

reducing FR sensitivity to a noise factor, reducing the noise factor, and compensating for

FR variation due to a noise factor.

2.3.4 AD and Concurrent Engineering

Designers cannot make all the decisions about products characteristics, such as

geometry, product components, and performance specification, without taking into

consideration of factors and concerns about manufacturing/construction, assembly,

testing, distribution, maintenance, repair, disassembly, recycling, and disposal. Certain

functions or features may require specific materials, manufacturing and assembly

processes, or they may limit the options for recycle and disposal of the product.

Concurrent engineering (or design) can be defined as simultaneous design of all aspects

of a product – from concept generation to manufacture, assembly, test, maintenance, and

disposal [Voland, 2004].

Prior to 1980s, over-the-wall approach was in use in the industry, there was

minimal feedback from later phases of product development lifecycle to the earlier

phases. The role of the manufacturing was to build what the designers generated and

presented on drawings and other design documentation whereas the role of the assembly

was to put together what manufacturing produced [Ullman, 1992]. This over-the-wall

approach was causing a lot of problems in production and assembly phases as well as

during the use of the product. A General Electric survey indicated that 60% of all

manufactured parts were not made exactly as represented in the drawings due to varied

reasons, such as, (i) the drawings were incomplete, (ii) the parts could not be made as

designed, (iii) the drawings were ambiguous, and (iv) the parts could not be assembled if

manufactured as designed [Ullman, 1992].

The concurrent design approach has overcome most of the problems of the over-

the-wall approach. In concurrent engineering, design teams are composed of members

representing one or more areas of the product development lifecycle (such as design,

marketing, finance, manufacturing, assembly, test, packaging, and recycling). The design

teams work together throughout the design phase (preliminary and detail design, if

73

applicable) to ensure that all concerns and factors from different aspects of the product

are taken into consideration and needs are satisfied by the final product.

Concurrent engineering establishes more effective communication links among

the product’s stakeholders and allows critical issues to be resolved much earlier in the

product development lifecycle, thereby reducing the need for corrective actions to be

taken after substantial amounts of time, effort, and money have been invested. These

characteristics of concurrent engineering have reduced the time required for producing a

new product [Voland, 2004]. It was estimated that concurrent engineering has resulted in

30 to 40 percent decrease in manufacturing costs, and 75 percent decrease in

scrap/rework efforts [Walker and Boothroyd, 1996].

The ability to communicate design decisions and to coordinate the creative

process among diverse disciplines determines the effectiveness of concurrent engineering

as a strategy for achieving shorter time to market, reduced development costs, and

higher-quality products [Albano and Suh, 1994]. Albano and Suh claims that the potential

benefits of concurrent engineering have not been fully realized since there is a lack of a

systematic framework for conducting group design activities, and basic principles for

decision-making. According to Albano and Suh (1994):

Effective communication involves much more than the traditional exchange of

drawings and design specifications. The participants must be able to

communicate design intent (i.e. what are the governing requirements and

constraints? and how does the design satisfy these criteria?) and design rationale

(i.e. why was a particular solution alternative selected for implementation?). In

the absence of good communication, it is difficult to integrate the contributions of

diverse disciplines into a coherent product and to identify solution concepts that

may ultimately fail to satisfy, some or all of the needs of the customer. In addition

to interdisciplinary communication, the flow of information between designers

must also be coordinated and managed with regard to any dependencies that may

arise or shared information that may be required. Proper sequencing of

74

interdependent design activities minimizes expensive and time-consuming design

iterations as more information becomes available. pp. 500.

Axiomatic design approach was introduced as a framework of enhanced

concurrent engineering by Jung (1993) and by Albano and Suh (1994). AD provides a

systematic approach for product design and production planning in order to foster

communication and coordination among design disciplines and help in the decision-

making process [Albano and Suh, 1994].

In AD, process domain includes the process variables (PVs) that are the processes

to manufacture the DPs. During product development based on the AD method, the

developer has to consider the PVs in the product design (developing DPs) and make sure

that the proposed design solutions can be manufactured. The process matrix [B] that

relates the DPs to the PVs, like the product design matrix [A], is also supposed to satisfy

the Independence Axiom to make sure that the manufacturing processes are robust

enough to manufacture the proposed design.

Suh (2001) states that in terms of AD terminology, both the product design matrix

[A] and the process design matrix [B] must satisfy the Independence Axiom by being a

diagonal or triangular matrix so that the product of these matrices [CE]=[A][B] must

be diagonal or triangular and concurrent engineering can be possible. The elements of

the [CE] matrix are:

CEik = ΣjAij Bjk

This concept is stated as Theorem 9 (Design for Manufacturability) in AD [Suh,

2001, pg. 61].

It is not efficient and may not be practical to share the whole detail design with

other design teams. The hierarchical design decomposition and the system architecture

plays the role of filtering the design knowledge so that only the pertinent information is

communicated [Lee, 1999]. The multi-layer or the master design matrix makes sure that

the top-level design intent is still maintained and the FRs are still satisfied.

75

2.3.5 AD and Design for X

There are some design methods that are developed to address a certain

consideration or a certain activity/phase of the product lifecycle. These methods are, in

general, called “Design for X (DFX)” where X may represent manufacturability,

assembly, maintainability, reliability, serviceability, quality, disassembly, environment

[Hu et al., 1999; Sun, Han, Ekwaro-Osire, and Zhang, 2003], test, etc.

The implementations of design for assembly (DFA) and design for manufacture

(DFM) has shown many benefits including simplification of products, reduction of

assembly and manufacturing costs, improvement of quality, and reduction of time to

market [Kuo, Huang, and Zhang, 2001].

However, in AD terminology, the X is one of the functional requirements or

maybe the most important functional requirement that the final product must satisfy

[Chen, 1999]. There are some other design methods that are not named in terms of

“Design for X”, such as Green Design, Value Engineering, Environmental Conscious

Design, etc. However, these methods are also developed to map a certain FR to DPs and

can be re-named in terms of DfX [Chen, 1999]. Table 2.8 lists some of the DFX methods

with their corresponding FRs.

Table 2.8 – DfX Methods and Corresponding FRs

Method Name FRs
Design for Manufacture Easy and economic manufacture
Design for Assembly Easy and economic assembly
Design for Disassembly Easy and economic disassembly
Design for Maintainability Maintenance with minimized cost, inconvenience and effort
Design for Serviceability No or little service which is economical and easy
Design for Testability Easy to isolate faults, and to write and execute test cases
Green Design (Design for
Environment)

Maximized environmental protection

Some DfX methods may cover some other DfX methods. For example, Design for

Environment covers Design for Disassembly and Design for Recycling since the product

should be disassembled first to reuse or remanufacture some parts, recycle some

materials, dispose the harmful parts/material so that the solid wastes are reduced or

76

eliminated to protect the environment [Chen, 1999]. Disassembly and recycle related FRs

can be derived from the environment protection related FR where environment protection

FR can be at any level of the FR hierarchy.

The problem with only using the DfX methods is that the solution will satisfy the

corresponding FR but not all the FRs that are required from the final product. In order to

make sure that all of the FRs that are required and established for the final product are

satisfied, it is obvious that the AD method should be used [Chen, 1999].

Chen (1999) claims that AD can be applied to develop a DfX method when the

corresponding FRs are identified: the first axiom helps develop the design guidelines

(DPs) and the second axiom helps develop the quantitative evaluation score to select the

best design. He used AD to develop a design for assembly method and proved his claim

[Chen, 1999].

2.3.6 AD and Failure Modes and Effect Analysis (FMEA)

FMEA is a series of techniques for identifying potential failure modes, their

effects on a product performance, and their significance [Kletz, 1999]. FMEA is best

used at the design phase in order to test the proposed design and to minimize the risks

associated with the design [Palady, 1995].

In an FMEA, the potential failure modes that describe how the design could fail to

perform its required functions are determined for each function (functional requirement)

and the effects of the failure modes are described in terms of what a customer would feel.

Unlike AD, a conventional FMEA does not describe the functional requirements

and design solutions systematically in a hierarchical manner [Mohsen and Cekecek,

2000]. Thus, all of the possible failure modes may not be identified and robustness

opportunities may be missed.

The FMEA development becomes more systematic and more effective by using

the AD. The AD provides relationships between FRs and DPs and between DPs and PVs

in a hierarchy that can be used in FMEA technique to improve the design/process

robustness and minimize the risks associated with a given design [Mohsen and Cekecek,

77

2000]. The end result of increased robustness and minimized risks is decreased

information content of the proposed design.

Since the DPs provide the physical means that affect the functional requirements,

all potential causes of failures for a particular failure mode for a given FR can easily be

determined. Also, the design hierarchy produced by the AD can be used for an in-depth

analysis of the potential causes of failures [Mohsen and Cekecek, 2000].

Satisfying the first axiom of the AD by an uncoupled design ensures that there

would be no possibilities of failures due to system/subsystem interactions (coupling).

Even in a decoupled design, the system/subsystem interactions can be identified and

taken into consideration [Mohsen and Cekecek, 2000].

2.4 AD and Product Development Lifecycle

AD deals with four domains of PDL: customer, functional, physical, and process

domains. However, the PDL management deals with these domains as well as other

domains and activities, such as test domain and component structure, requirement

management, change management, project management, quality assurance, etc. Although

the AD method does not cover all the PDL domains, it provides a very structured system

architecture that can support all of the PDL activities in varying degrees.

Activities such as requirement management, change management, and testing as

well as project management are performed throughout the product development lifecycle.

These activities benefit from the structured approach of the AD. Although majority of the

testing activities are performed towards the end of the lifecycle, testing considerations

should be kept in mind starting from the early phases of the lifecycle. In addition, the

quality of the testing very much depends on the quality and robustness of the lifecycle

method and requirement management approach used.

In the following subsections, how the AD method supports some of the PDL

activities is explained. The purpose of this discussion is to prove that AD provides a solid

foundation for these activities. This will serve to further explain why the AD method is

extended to cover the whole PDL to develop the Axiomatic Product Development

Lifecycle (APDL).

78

2.4.1 AD and Requirement Management

If AD is applied to a development effort, first CNs are identified and then the FRs

are decomposed to create the FR hierarchy. This step-by-step approach provides a

structured method of requirements gathering and clarification. The customer needs and

functional requirement hierarchy can be used to develop a requirement specifications

document. This helps achieve the first objective of requirements management, that is, to

capture the requirement right.

Tools and methodologies are required to assess the impact of requirement changes

on the rest of the product development lifecycle in order for the customers and the

product development team to make informed decisions as to which requirement changes

are viable and practical. Hintersteiner (2000) suggests that by incorporating Axiomatic

Design principles, the system architecture evaluates the quality of a design and its

robustness to changing requirements, as well as showing how a proposed design change

impacts other aspects of the design. The mapping between the design domains and the

decomposition provides a structure that can be used to trace the requirements to make

sure that all of the requirements are satisfied in the design and process domains. This

helps partially achieve the second and the third objectives of requirements management,

that is, to manage changing requirements, and to align the system development lifecycle

activities with the requirements.

However, AD does not require creating a mapping matrix between the customer

needs and the functional requirements. Furthermore, AD does identify the DPs but does

not identify the physical entities that provide the design solutions stated in the DPs nor

the verification and validation activities. Therefore, AD does not provide full requirement

traceability; from the CNs to the components and test activities. Not being able to trace

requirements throughout the product development lifecycle hinders the effort of change

impact analysis and change management for both requirement changes and design

changes.

Gumus, Ertas, Unuvar, and Doganli (2002) extended the AD approach for better

requirement traceability. Gumus and Ertas (2004a; 2004b) proposed a quantitative

79

requirement quality concept and integrated this with AD for better requirement

management. Hintersteiner (2000) suggested a system design technique based on AD

theory as a tool to improve communication between the customer and the design

engineers after the initial design concept is established. He gives an example of how the

system architecture created by applying AD has been used to understand and track

changing customer requirements for the design of a commercial photolithography system.

The current process of requirement traceability in the industry lacks DPs and their

relationship to requirements. Instead only requirements and their related hierarchy are

captured. The FR hierarchy and the design matrix provide an easy way to determine

which requirements and design solutions will be affected by a requirement change

[Jeziorek, 2005].

2.4.2 AD and Change Management

The mapping between the functional, physical, and process domains and the

decomposition provides a structure that can be used to manage both requirement and

design changes since the AD system architecture captures the FRs, DPs and constraints

along with their interrelationships as shown in Figure 2.13.

Figure 2.13 – Tracing problem source in AD SA [Nordlund, 1996]

80

Change impact analysis can be performed using the AD system architecture. This

includes choosing between alternative concepts, guiding the sequence of the design, and

developing options for decoupling coupled parts of an existing design [Harutunian,

Nordlund, Tate, and Suh, 1996; Nordlund, 1996; Lee, 1999].

Tate (1996) classified DP changes into three groups (i) change of DP itself, (ii)

change of DP details/parameters, and (iii) change of DP values. Type ii and iii changes

do not affect the design matrix since the DP itself did not change. However, the design

matrix and the master design matrix have to be reevaluated for Type (i) changes [Lee,

1999].

Jeziorek (2005) introduced cost units (CUs) (or physical components) for tracking

changes to the CUs in order to calculate the cost of a proposed change. He proposes that

once the decomposition process is completed, all of the physical components, or costing

units (CUs), must be identified.

The design matrix captures the relationship between FRs and the DPs that satisfy

those requirements. The traceability provided by the design matrix aids in defining the

scope of a design change and allows engineers to identify the FRs and DPs that will be

affected by the design change. If this traceability knowledge is not available, a team of

experts must come together to try to identify the requirements and solutions that will be

affected by the change. However, the team of experts can potentially include unaffected

requirements and solutions and exclude others that are affected and this would result in

much higher cost for change impact analysis [Jeziorek, 2005].

Many components interact with each other physically as well as functionally.

However, this information is typically not captured by a design matrix as part of AD.

Instead, a new component-component matrix was created in order to capture physical

interactions between components [Trewn and Yang, 2000; Jeziorek, 2005]. With the

component relationships matrix, change management can be extended to related

components.

Jeziorek (2005) lists five of many different ways of interaction between

components: physical, spatial, thermal, information and electromagnetic.

81

2.4.3 AD and Testing

The AD decomposition allocates the functional requirements and constraints to

individual DPs and this framework helps develop a test plan as well as test procedures

from DPs to subsystem to system level verification [Mohsen and Cekecek, 2000]

However, the AD does not necessarily identify individual components and

subsystems since the DPs do not represent the physical architecture of the system.

Furthermore, AD does not include the test domain.

2.4.4 AD and Project Management

Identifying the tasks (Work Breakdown Structure – WBS), optimally assigning

the tasks to the available resources, and workflow management are some of the most

important activities of project planning and management and can make significant

difference in the delivery time and cost. Identifying the tasks necessary to fulfill a design

and matching the best available human resources to those tasks is project manager’s

responsibility. The project schedule is used for determining what needs to be

accomplished next, to monitor the expected progress over time or ascertain dependencies

between tasks.

Steward and Tate (2000) and Braha (2002) proposed to integrate AD into the

process of project planning and task assignment for software development projects. The

DPs were loaded into a project Gantt chart as tasks along with the dependencies from the

design matrices. By adding time estimates to the individual tasks and making

assumptions about the resources allocation, the Gantt chart takes on a common

appearance of tasks distributed over time with internal dependencies [Steward and Tate,

2000].

The most remarkable benefits of the application of AD to the construction of

project plans were the early delivery of detail in identified tasks and the extent of

interactions captured as links between tasks [Steward and Tate, 2000].

In addition to using the DPs and the design matrix to establish the work

breakdown structure (WBS), AD helps in requirement management and change

82

management as explain in the preceding sections. Successful requirement and change

management are prerequisites for successful project management.

2.5 Design and Creativity

The word “creativity” has been used in different context and with different

meanings. It has been used to describe the human activity that results in ingenious,

unpredictable, or unforeseen results (e.g., new products, processes, and systems) while

solving the needs and problems of society or human aspirations. In this context, creative

solutions are discovered or derived by inspirations and/or perspiration, and often times

the end result is not specifically defined. This creative spark or revelation may occur

because of the capabilities of the human brain such as storing huge amount of data and

synthesizing solutions through the use of associative memory, pattern recognition,

digestion and recombination of diverse facts, and permutations of events.

Sometimes the word creativity has been used in mysterious sense, when the

process or the logic involved in a given intellectual endeavor (e.g., arts and music) is not

fully understood, and yet the result of the effort is intellectually, emotionally, or

aesthetically appealing and acceptable. A subject is always mysterious when it relies on

an implicit thought process that cannot be stated explicitly and explained for others to

understand and that can be learned only through experience, apprenticeship, or trial and

error. Design has been one of these mysteries, but this intellectual and mental barrier has

to be overcome by converting design into science to support and structure the creative

process.

In most professions, competent work requires the disciplined use of established

practices. It is not a matter of creativity versus discipline, but of bringing discipline to the

work so that creativity can happen. The use of methodologies brings order and efficiency

to any job and allows workers to concentrate of producing a superior product. A

disciplined effort removes waste, error, and inefficiency, freeing financial resources for

better uses.

83

The proposed PDL approach along with the AD method will provide the structure

and discipline to reduce or even eliminate unproductive efforts and thus allow the

development team to concentrate on the real issue and better solutions.

2.6 Design, Product Development Lifecycle Models and Computers

Since the 1960s, the idea of externalizing design from human designers and

constructing executable design systems has been explored. Currently computers are used

in the design field primarily for graphic representation, solid modeling, product

modeling, optimization of design solutions, and simulation. Use of computer technology

(Computer-aided design and manufacturing – CAD and CAM – and many software

analysis tools) has significantly reduced the time required for developing new products

and solutions.

Since computers are becoming ever more powerful and cheaper, they should also

be used in design to store codified information and to augment human capabilities. More

recently, the formalization, representation, and manipulation of knowledge in computers

have made it possible to construct knowledge-based design (KBD) systems. Such

systems have the potential to produce both fundamentals changes in design and better

designs [Coyne et al., 1990].

The objective of KBD is to facilitate effective product design and manufacturing

activities through the whole lifecycle of product. To achieve this long term goal, various

types of knowledge on products, their manufacture, use, maintenance, and other life-

cycle activities should be turned into reusable resource, and the resulting life-cycle

knowledge should be deployed during the product development and manufacture,

particularly during the early design stages (conceptual design) [Mäntylä, 1996].

KBD systems require a large-scale design repository in which design knowledge

is intensively and systematically stored so that efficient search and retrieval of deign

knowledge could take place. Design knowledge has two categories; i.e., design object

knowledge (such as geometric and product modeling) and design process knowledge. For

example, a mechanical engineering design process requires various kinds of design object

models, such as geometric model, kinematic model, and finite element model. Design

84

knowledge must be systematically formalized, made computable, and organized in order

to achieve flexible, efficient, effective reuse and sharing of knowledge.

Knowledge representation and manipulation languages or formats, such as

Knowledge Intensive Engineering Framework, KIEF [Yoshioka, 2000], Knowledge

Interchange Format, KIF [Genesereth and Fikes, 1990], and Knowledge Query and

Manipulation Language, KQML [Finin, McKay, and Fritzon, 1992], are used to

formalize and make knowledge computable. The objective of this type of languages is to

establish a unified language/format to represent knowledge so that different agents, such

as software tools, designers, and databases, can express, share and reuse existing

knowledge by searching and retrieval.

Since product development lifecycle is a process in which designers use various

kinds of knowledge, it is difficult to collect, store and prepare all necessary knowledge

before design. Also, the necessary knowledge is largely fragmental, scattered, and stored

in different format and different places. This makes the communication and exchange

among design experts, tools or design agents difficult. Therefore, it is an essential to

develop and use advanced computer environment, which has the capabilities such as;

good data and knowledge representation, efficient programming features, adequate

mechanisms for storage and concurrency control and good communications with other

software systems, and providing mutual communications among those involved in every

stage of the product life cycle. Therefore, unified or standard knowledge representation

languages or formats, such as KIF, KQML, and DKSL, are an essential part of any KBD

system.

There are various software tools that are used in product development lifecycle to

help manage and coordinate the different phases and activities of the lifecycle as well as

to develop, store, and retrieve lifecycle knowledge such as requirements, design

parameters, test cases, etc. Presented below is a list of some of the available tools and

their use.

85

Table 2.9 – Software tools for design and development lifecycle

Tools Usage
Acclaro DFSS http://www.axiomaticdesign.com/

Acclaro DFSS software implements axiomatic design technology for
product and systems development with a complete suite of DFSS
tools to reduce development risk, reduce cost and speed time to
market.

Teamcenter http://www.ugs.com/
Teamcenter’s PLM digital enterprise backbone allows you to manage
all of the diverse processes throughout your extended enterprise, as
well as across the planning, development, manufacturing, and support
domains of your product lifecycle.

Product
Development
System (PDS)

http://www.ptc.com/products/product_development_system.htm
PTC‘s Product Development System (PDS) delivers precise
management of digital product data along with every aspect of the
product development process.

MS Project http://www.microsoft.com
Project management, scheduling, and resource planning.

Cradle http://threesl.com/
Cradle is a multi-user, multi-project, systems engineering
environment that spans the entire systems and software development
lifecycle. Cradle provides a suite of tools that integrate all project
phases, activities and deliverables within a single, configuration
managed, access controlled framework.

Rational®
RequisitePro®

http://www-306.ibm.com/software/awdtools/reqpro/
The IBM® Rational® RequisitePro® solution is a requirements and
use case management tool for project teams who want to improve the
communication of project goals, enhance collaborative development,
reduce project risk and increase the quality of applications before
deployment.

CORE Systems
Engineering Tool

Vitech Corporation (http://vitechcorp.com)
The CORE product family provides a flexible combination of
modeling and simulation tools supporting product and process
engineering.

GoldSim Pro
GoldSim

Technology Group (http://www.goldsim.com/software)

GoldSim Pro is a general-purpose simulator suitable for modeling
any type of business, scientific, and engineering system that can be
expressed mathematically.

86

CHAPTER III

III AXIOMATIC PRODUCT DEVELOPMENT

LIFECYCLE (APDL)

The AD method provides a robust structure and systematic thinking to support

PDL activities; however, it does not support the whole product development lifecycle

[Tate and Nordlund, 1995]. The same logic and scientific thinking can be used and

extended to capture, analyze, and manage the product development lifecycle knowledge.

The Axiomatic Product Development Lifecycle (APDL) model utilizes the systematic

nature of the AD method in order to provide a systematic approach for product

development lifecycle activities and management.

The APDL improves the AD in the area of domain entity description and

management and takes the AD method one step further to support the test domain of the

product development lifecycle.

The AD provides two axioms and many theorems and corollaries to evaluate the

quality of design solutions. The first axiom also influences the selection and formation of

the functional requirements so that they can be achieved independently by the proposed

design solution. However, the AD does not provide guidance on determining the quality

of the requirements. The AD also does not provide any guidance or standardization for

description of the requirements.

Although the constraints are defined to be in the Functional Domain, only the FR

characteristic vector exists in this domain in the AD method, the constraints are not

captured in a characteristic vector. Moreover, the relationships between customer needs

(CNs) and FRs and between CNs and constraints are not captured in matrix form in the

AD method.

The AD does not specifically support testing and verification activities. Testing

and verification activities and concerns are generally not considered to be a factor in

deciding the quality of design. However, keeping testing and verification concerns in

AXIOMATIC PRODUCT DEVELOPMENT

LIFECYCLE (APDL)

87

mind makes sure that the requirements are verifiable and the design activities are

performed to meet these verifiable requirements. Verifiability should be one of the

quality factors for functional requirements.

In the AD, the domain that contains the DPs is called the physical domain;

however, the DP hierarchy does not necessarily represent the physical structure of the

system. A component can provide the design solution expressed in more than one DP or

multiple components can be required to achieve the design solution represented by a DP

[Tate, 1999]. The DP hierarchy can be totally different from the component hierarchy as

in the case of the beverage can example given in Suh, 2001 pg. 17. Thus, the AD does

not capture the true physical architecture of the system.

The APDL model is developed to over-come these short-comings of the AD

method as far as the product development lifecycle is concerned.

3.1 APDL: New Domains and Characteristic Vectors

For the purposes of managing development lifecycle knowledge and supporting

different development lifecycle activities such as requirements and change management

throughout the whole product development lifecycle, one new domain and four new

characteristic vectors are added to the existing AD domains and characteristic vectors.

A characteristic vector for the system components (SCs), that provide the design

solution stated in the DPs, is defined in the Physical Domain. The SC hierarchy

represents the physical architecture of the system. The method for categorizing the

components with respect to system physical architecture varies with each organization. A

general portrayal used by Eppinger (2001) is system, subsystem, and component,

although further categories are available, such as the system, segment, element,

subsystem, assembly, subassembly, and part (NASA, 1995).

The SC vector and the SC hierarchy (system physical architecture) makes it

possible to perform such analysis and activities as Design Structure Matrixes (DSM),

change management, and impact analysis as well as capturing structural information and

requirement traceability.

88

Another difference between the AD and the APDL model is that in the APDL

model the PVs describe the processes to produce the SCs, not the DPs.

Another addition to the AD method is the input constraint (IC) vector that exists

in the functional domain along with the functional requirement (FR) vector. The IC

vector is used to capture the input constraints (IC), which are specific to overall design

goals and imposed externally by the customer, by the industry, or by government

regulations. The ICs are derived from the CNs and then updated based on the other rules

and regulations that the product has to comply with but not mentioned in the Customer

Domain. This new vector helps establish the relationships between ICs and the CNs and

also helps allocate the ICs to the DPs. The mapping between the ICs and DPs may

require the decomposition of the ICs to allocate specific ICs to the lower level DPs. This

mapping is used in evaluating the design solutions to assess if the proposed design

satisfies the allocated ICs.

The component test cases (CTCs), that are used to verify the corresponding

component satisfies the allocated FRs and ICs, are defined in the {CTC} characteristic

vector in the test domain. Component test is defined by IEEE Std. 610.12-1990 as

“Testing of individual hardware or software components or groups of related

components.” Each system component (including subsystems) must be tested before it is

integrated into the system to make sure that the requirements and constraints allocated to

that component are all satisfied.

At the end of the system development, the system must be tested to make sure that

the system satisfies all of the functional requirements defined in the functional

specification document. The functional test cases (FTCs) are stored in the {FTC}

characteristic vector in the test domain. Functional test is a glass (white) box test and its

purpose is to prove that the requirements are achieved by the system. IEEE (1990)

defines functional testing as “(1) Testing that ignores the internal mechanism of a system

or component and focuses solely on the outputs generated in response to selected inputs

and execution conditions. (2) Testing conducted to evaluate the compliance of a system

or component with specified functional requirements.”

89

In addition to the above differences between AD and APDL, the APDL also

provides more guidance and more templates for capturing and managing development

lifecycle knowledge.

3.2 APDL Framework

By adding one new domain and four new characteristic vectors, the whole

development lifecycle knowledge starting from the customer needs to the testing can be

captured and managed. Figure 3.1 presents the domains and characteristic vectors of the

APDL model. This model shows the relationships between different domains of the

product development lifecycle and does not necessarily indicate the order of the domain

specific activities; the flow of the activities is presented later in Figure 3.2. The APDL

model can be used in many project management models such as waterfall, spiral,

iterative-incremental, evolutionary prototype, etc. to manage the data produced for each

domain as well as the relationships between the domains.

Figure 3.1 – APDL Domains and Characteristic Vectors

Like in the AD method, for each pair of adjacent domains, the domain on the left

represents "what we want to achieve," while the domain on the right represents the design

{CN} {FR}

{IC}

{DP}

{SC}

{PV}

Customer
Domain

Functional
Domain

Physical
Domain

Process
Domain

{CTC}

{FTC}

Test Domain

90

solution of "how we propose to achieve it" or “how we propose to test it” for the test

domain. The contents of each domain are described below.

Table 3.1 – APDL Domain Contents

Customer domain The needs (CNs) that the customer seeks in a product or system.

Functional domain Functional requirements (FRs) and input constraints (ICs) of the
design solution.
FRs completely characterize the functional needs of the design
solution (i.e., software, organization, etc.) in the functional domain.
ICs are imposed externally by the customer, by industry standard, or
by government regulations and they set limits for acceptable DPs.

Physical domain Design parameters (DPs) of the design solution and System
components (SCs) that provide the design solutions (DPs).
DPs are the elements of the design solution in the physical domain
that are chosen to satisfy the specified FRs. DPs can be conceptual
design solutions, subsystems, components, or component attributes.
The SCs are the physical entities that provide the design solution
described as DPs. The hierarchical collection of the SCs forms the
system physical architecture. SCs are either produced or selected
from commercially available alternatives.

Process domain Process variables (PVs) that characterize the process to produce (i.e.
manufacture, implement, code, etc.) the SCs.

Test domain Functional Test Cases (STCs) and Component Test Cases (CTCs).
FTCs are used to verify that the FRs documented in the requirement
specification (RS) document are satisfied by the system.
CTCs are used to verify that the SCs (either subsystems or
components) satisfy the allocated FRs and design ICs.

The following equations are obtained from the mappings between the APDL

domains shown in Figure 3.1. The design equation (Equation 1) used in AD is applicable

to the FR-DP mapping in APDL and is repeated here to represent the whole development

lifecycle. Since PVs in APDL are the processes to produce the SCs, not the DPs as

described in AD, the process equation (Equation 2) of the AD is modified in APDL to

reflect this change as shown in Equation 7.

{CN} = [R] {FRi} (3)

{CN} = [C]{IC} (4)

91

{FR} = [D] {DP} (1)

{IC} = [CA]{DP} (5)

{DP} = [SS] {SC} (6)

{SC} = [P] {PV} (7)

{FR} = [FT] {FTC} (8)

{SC} = [CT] {CTC} (9)

where;

• [R] - requirement matrix,
• [C] - constraint matrix,
• [D] - design matrix,
• [CA] - constraint allocation matrix,
• [SS] - system structure matrix
• [P] - process matrix, and
• [FT] - functional test matrix,
• [CT] - component test matrix

• {CN} - customer needs vector,
• {FRi} - initial functional requirement

vector,
• {FR} - functional requirement vector,
• {IC} - input constraint vector,
• {DP} - design parameter vector,
• {SC} - system component vector, and
• {PV} - process variable vector, and
• {FTC} - functional test case vector,
• {CTC} - component test case vector.

The naming convention for the matrix elements is based on the domain entities

that the element expresses the relationship for. For example, the element of the design

matrix that relates FR2.1.2 to DP2.1.3 is named D2.1.2 - 2.1..3.

The design axioms are applicable to the design equation only and the

independence axiom applies to process equation too. The other equations serve to

systematize the product development processes and product development knowledge

management by capturing the product development related knowledge, relations and

traceability.

The tables and matrices used during the decomposition and zigzagging do not

allow providing very detailed descriptions of the domain entities. However, the detail

descriptions of the domain entities should be provided in a format most suitable for the

discipline and the unique identifiers should be used to relate the documents to the

mapping matrices and tables. This will provide full integration of documentation as well

92

as traceability throughout the development lifecycle. The domain entity templates

proposed in the following sections should be used as a starting point to develop the

templates most suitable for the development organization.

The APDL approach, like the AD method, can be used in design and development

of products, systems, services, and organizations in many different disciplines.

3.2.1 APDL Process Overview

The APDL model proposes a V-shaped process to develop the detail design with a

top-down approach and complete the PVs, CTCs, and FTCs and produce and test the

product with a bottom-up approach as shown in Figure 3.2.

The first step of the product development lifecycle is to elicit and clarify the

customer needs. The objective of this step is to gather as much information as possible to

correctly and completely identify all the stakeholders of the product, all the customer

needs and problems relating the product to be developed as well as any constraints

imposed by the customer, operational environment, rules and regulations, existing and

available resources and technology on the development and selection of acceptable

design solutions.

Once the CNs are available, they should be analyzed to derive initial FRs (FRis)

and any product related constraints, called input constraints (ICs). The mapping from

CNs to FRis and ICs is a simple mapping process. This mapping is performed once

before the design decomposition starts and whenever there is a change in the customer

needs.

Once the FRis and the ICs are derived, they should be analyzed to develop the

system FR, DP, and SC triplet that states the system objective, the proposed system

design, and the proposed system. Developing the system FR/DP/SC triplet helps ensure

that a true top-down approach is used to analyze the requirements and develop the design.

This triplet also serves as a mean to establish the scope for the system and the project.

93

Customer Need (CN)
Identification

Map CNs to FRi and IC

Develop System
FR/DP/SC

Start decomposition and
zigzagging process from

System FR/DP/SC

Develop children FRs

Develop children DPs
for the children FRs

Evaluate the design

Acceptable Design
(Uncoupled or
Decoupled)?

Develop SCs for DPs

Develop draft PVs for
SCs

Develop draft CTCs
for SCs

Are verifiable/
attainable FRs obtained

for all branches?

Baseline FRs

Is detail design
complete?

Complete PVs

Complete CTCs

Develop FTCs for
baseline FRs

Produce components
by executing PVs

Assemble subsystem
by executing PVs

Test components by
executing CTCs

Test subsystems by
executing CTCs

Test the system by
executing FTCs

Top-D
ow

n D
ecom

position and Zigzagging

Yes

No

No

No

Allocate ICs to DPs

Yes

Yes

Bo
tto

m
-U

p
C

om
pl

et
io

n
- P

ro
du

ct
io

n
- T

es
tin

g

No

Yes

Figure 3.2 – APDL Process

Once the system FR/DP/SC triplet is developed, the design decomposition and

zigzagging process starts. Since the initial FRis can be at different levels of detail, they

should be mapped to the FR/DP hierarchy during the decomposition process where

appropriate. The ICs that are derived from the CNs are first allocated to the top level DP,

and then during the decomposition, the ICs are decomposed, if necessary and allocated to

the lower level DPs.

94

During the decomposition, given the parent FR and DP as well as the allocated

ICs to the parent DP, the functions that the DP has to perform in order to achieve the

parent FR and satisfy the allocated ICs are determined and they are listed as the children

FRs. The decomposition and zigzagging continues by finding or developing DPs for the

newly established FRs and checking the design to make sure that an acceptable design

(uncoupled or decoupled design) is obtained that satisfies the allocated FRs and ICs.

When the DPs are developed, the ICs are analyzed again to determine if the proposed

solution satisfy the ICs and also to allocate them to the new DPs.

Once a DP is determined, a corresponding SC that provides the solution stated in

the DP is identified and then a draft PV that defines the process to produce the SC is

developed, and finally, a draft CTC is developed to test the SC.

The top-level FRs should be solution-neutral as much as possible in order not to

set mind-barriers and to encourage creativity. In addition, the FRs should be both

verifiable and attainable. However, at very high levels, the FRs may be very vague, and

therefore, not verifiable. Also, one cannot claim that the FRs are attainable without

proposing a possible solution. Even if a solution (DP) is proposed for a FR, the proposed

DP will most probably be very generic at this level and it would be very difficult to

determine if the DP is doable without further decomposition. Therefore, before

committing a lot of resources, a minimum set of verifiable and attainable FRs that

completely characterizes the functional needs of the design solution should be

established. To achieve this, the design decomposition and zigzagging process should

have two phases: requirement analysis and design phases. The requirement analysis phase

ends when a set of verifiable and attainable FRs is developed and the design phase ends

when the leaf-level DPs are developed.

The FRs and DPs at the end of requirement analysis phase are called the baseline

FRs and DPs. At this point, the FRs are documented in the requirement specification (RS)

document. This RS document should be reviewed by the stakeholders and sponsors’

approval for the requirements should be obtained.

95

Sponsors’ approval of this FR set indicates the end of the “requirement analysis

phase” and the start of the “design phase” of the development project. Up to this point,

only conceptual design is developed to map all the FRis into the FR hierarchy and to

completely define the functional needs. Some detailed design can also be developed, such

as proof of concept prototypes or virtual models, to make sure that the FRs are attainable.

However, the only design related information contained in the RS document should be

the input constraints and the conceptual design that is used to develop the baseline FRs.

When the baseline FRs/DPs are obtained, they are placed under change control

and any changes to them should go through a change management process to analyze the

impact of the change on the design and rest of the development lifecycle and determine if

the proposed change should be accepted.

The decomposition and zigzagging process proceeds to the leaf level where the

DPs are specified well enough to be either implement (produced/manufactured/coded/

etc.) or to be procured whether the DPs are subsystems or components.

Once the leaf level is reached, the design decomposition and zigzagging ends and

a bottom-up process starts to re-evaluate and complete the descriptions of the SCs, PVs,

and CTCs.

The FTCs are developed for the baseline FRs that are documented in the RS

document when the detail design is completed.

The next step in the product development lifecycle is to use the PVs to produce

the components and then integrate them to produce the system. Whenever an SC, be it a

component or subsystem, is produced, the CTC for that SC is used to test it before it is

integrated/assembled further into the system.

When the system is produced, the final acceptance test is conducted by executing

the FTCs to validate the system. The final acceptance test, i.e., the acceptance of the

system, first article, or the prototype, marks the end of the product development lifecycle.

By manipulating the mapping matrices as well as the characteristic vectors

relationships between any entities from different domains as well as entities in the same

domain can be easily identified. Therefore, it is easy to find out if all CNs and FRs are

96

satisfied by the DPs or SCs. It is also possible to find out if each and every FR and SC

are tested at the system, subsystem, and component level.

The detail descriptions of the domain entities should be provided in a format most

suitable for the discipline and the unique identifiers should be used to relate the

documents to the mapping matrices. This will provide full integration of documentation

as well as traceability throughout the development lifecycle.

It is important to define standards and templates for the domain entities, if

possible, so that they are not misused or misunderstood. The description of customer

needs, functional requirements, component test cases and functional test cases do not

depend very much on the discipline of the product being developed whereas the

description of design parameters, system components, and process variables very much

depend on the terms and nature of the discipline of the product being developed.

Templates can and should be developed for CNs, FRs, CTCs, and FTCs in order

to make sure that all required information related to these domain entities are properly

captured and their descriptions are complete. Even if all the required information is not

complete, at least the missing information can be determined and necessary actions can

be taken such as making an assumption, identifying a risk and developing a risk plan, or

allocate enough resources to find the missing information.

In the following sections, the APDL process is further explained; the domain

entities are described in detail, and the templates for documenting the domain entities and

the mapping matrices are presented.

3.2.2 Customer Needs

The customer needs (CNs) are the complete set of the wants, needs and attributes

that the customer seeks in a product or a system. The PDL starts with identifying these

CNs. They are expressed in customer’s own language. A more detailed explanation of

customer need assessment phase is given in Section 2.1.1.1.

The goals of identifying the customer needs are to understand what is known,

what is unknown, what is sought, and the problem situation, to identify the stakeholders,

to understand the stakeholders and their interests, to understand other benefits and vested

97

interests to society or technology, to find out the limitations in the resources likely to be

available, and the technology likely to be involved.

In order to achieve high quality requirements and to assure that no requirements

are missed, all the stakeholders should be identified, all the external interfaces should be

defined, and operational concepts or use cases should be developed as well as systematic

models and approaches should be used for capturing CNs.

Some of the techniques used for identifying customer needs are:

• Structured workshops

• Brainstorming or problem-solving sessions

• Interviews, surveys/questionnaires

• Observation of work patterns

• Observation of the system’s organizational and political environment

• Technical documentation review

• Market analysis

• Competitive system assessment

• Reverse engineering

• Simulations and prototyping

There are several methodologies to gather customer needs, such as Quality

Function Deployment (QFD) [Akao, 1990] and House of Quality [Hauser and Clausing,

1988].

The CNs do not have to be measurable or testable; they are just the needs of the

customer. However, when they are mapped to the functional domain, the FRs derived

from the CNs have to be measurable and testable so that an acceptance test can be

performed objectively to prove that the end product satisfies the stated functional

requirements. At a minimum the following information should be collected for each CN:

98

Table 3.2 – CN Attributes

Attribute Description

CN statement Statement of the customer need in customer’s own language

CN source Contact information of the customer

Date of elicitation Date when the CN is elicited from the customer.

Comments Any explanatory comments about the CN or the customer
provided by the system analyst.

Some of the important product lifecycle phases and activities that do not belong to

the product development lifecycle such as maintenance, reliability, training, and end-of-

life disposition (e.g., recycle and disposal) generally receive limited visibility early in

product development, and this results in products that are complicated, not user-friendly,

and costly to support in the operational environment. By including concerns and needs

about these factors and activities as part of the customer needs that the end product

should satisfy, the cost of ownership can be reduced; the operational performance,

efficiency, customer satisfaction, and product support can be radically improved.

After the CNs are gathered and analyzed, the CNs are mapped to initial functional

requirements (FRis) and input constraints (ICs).

3.2.3 Functional Requirements

The requirement analysis phase is explained in detail in Section 2.1.1.2. This

section explains how APDL handles requirement analysis.

Deriving FRs from CNs and stating them is the problem definition stage of the

development lifecycle, and it cannot be emphasized too strongly. Although this activity is

a totally subjective activity, requirements templates or checklists should be used to

provide guidance and standards in developing and documenting the FRs. Also, internal

and customer reviews should be performed to make sure that the derived requirements

are in line with the stated customer needs. The FRs should be tracked back to the CNs to

make sure that ach and every FR is developed to satisfy a stated and documented

customer need (s).

99

Requirements should be verifiable and attainable by themselves or should be

decomposed into verifiable and attainable requirements. The “baseline” requirements

should be verifiable and attainable since they establish the foundation of the system and

form the basis for the rest of the product development lifecycle activities such as design,

manufacture, test, and operation.

The FRs characterize the functional needs of the design solution (i.e., software,

organization, etc.) in the functional domain. The FRs that are mapped from the CNs may

not be the top level FRs, they could be the children of a higher level requirement that is

derived from another CN or the parent FR may not exist yet. Therefore, the FRs initially

generated from the CNs are suffixed by “i” for “initial” in order to indicate that they do

not represent the FR/DP hierarchy yet.

The CNs are analyzed to create the initial FRs while taking into consideration the

project timing, available resources, target market and other factors that may influence the

project scope.

The initial FRs are used to develop the system FR and to decompose the system

FR/DP into verifiable and attainable FRs. Once this is achieved, the FRs are baselined

(functional baseline), documented in a specification document and approvals of the

stakeholder or the sponsor is obtained. After the functional baseline is established,

changes to the baselined FRs are strictly controlled.

Baselined FRs are a minimum set of independent requirements that are shown to

be verifiable and attainable and completely characterize the functional needs of the

design solution (i.e., software, organization, etc.) in the functional domain. Note that this

definition differs from the FR definition of the AD in that the top level FRs may not be

the baselined FRs.

The higher-level FRs should be explicitly stated in solution neutral terms to avoid

imposing unnecessary design constraints at the lower levels and therefore encouraging

creativity in finding innovative solutions. A neutral functional requirement states what is

required, not how the requirement should be met. Neutrality allows designers to be more

creative and to pursue alternative, competing system designs. Although developing

100

neutral FRs at each level of decomposition is a good practice, it is especially important

for higher level FRs since the top levels of the FR-DP hierarchy constitute the conceptual

phase of the design effort, which is the most important stage for innovation in the design

process.

The FRs must be stated with expected environmental variation, customer usage

variation, and required useful life before disposal so that accommodation to handle these

noise variables is included in the design [Suh, 2001].

The Quality Function Deployment (QFD) can be used to define the FRs. The

QFD may be an effective tool for an existing product that needs improvement, but FRs

must be defined in a solution neutral environment for development of new products [Suh,

2001].

There are many quality factors or good requirement attributes suggested in the

literature. However, there are two main factors that determine the requirement quality:

“verifiability” and “attainability”.

Verifiability is described as the degree to which a requirement is stated in terms

that permit establishment of verification criteria and performance of verification to

determine whether those criteria have been met by one or more of four alternative

verification methods: inspection, analysis, demonstration or test. Stating the functional

requirements in measurable terms and avoiding ambiguous terms such as maximize,

sufficient, robust, easy, user-friendly, support, etc. makes sure that the requirement is

verifiable.

Some functional requirements can be descriptive and are verified by the

summation of the children requirements. However, the leaf level FRs have to be

verifiable by themselves.

If a FR is ambiguous or not concise, that requirement cannot be verifiable.

Concise functional requirement includes only one requirement stating what must be done

and only what must be done, stated simply and clearly. Unambiguous requirement is

complete and does not need further amplification to start design. Unambiguous

101

requirement must have one and only one interpretation and should be easy to read and

understand.

A functional requirement is attainable if it can be achieved by one or more

developed system concepts at a definable cost and schedule. This implies that at least a

high level conceptual design has been completed and cost tradeoff studies have been

conducted.

All requirements have attributes that are defined by the development and

management teams according to the project’s or organization’s needs. These attributes

are a rich source of information about the requirements that can be used for

communication, planning, and tracking purposes [Davis and Leffingwell, 1999]. These

attributes give much more detailed information about the requirements, rationale, and

their relationships with other requirements, source documents, and test activities.

The attributes listed in Table 3.3, at a minimum, should be used to describe the

FRs. The FR set documented in the RS document should be evaluated using the quality

factors defined in Table 3.4.

Table 3.3 describes the proposed FR Template, which is necessarily the list of the

requirement attributes that are generic enough to apply to different disciplines. However,

each project/company may add other attributes that are critical to the success of the

design and development effort.

Three quality factors are proposed in Table 3.4 to evaluate the quality of the

baselined functional requirement set. This evaluation is performed to ensure that the

system is completely characterized by the FRs and the FRs are consistent with each other.

The master design equation can be and should be used to evaluate the FRs based on these

three quality factors.

102

Table 3.3 – FR Attributes

Attribute Description
Unique
identifier

The unique ID is assigned to a single requirement for identification and
tracking purposes. This number may include the system the requirement
belongs to, its version, or the allocation category.

Category Categories are used to classify requirements. There are three major
categories: (1) Project requirement, (2) Functional Requirement, and (3)
Constraints

Title One line or phrase description of the requirement to be used as title.
Description Detailed explanation of the requirement.
Rational An explanation or a reference to an explanation of the reason for the

requirement or the customer benefit from this requirement.
Original
Source

A person (e.g., customer, user, etc.) or a document (e.g., standard, work
order, etc.) that the requirement is created by/from.

Priority Priority (on a customer defined scale) given to the requirement by the
customer. Determine which requirement is incorporated into the system
first.

Degree of
Necessity

Essential (must be included in the system), Useful (if not met, does not
make the system unacceptable), and Desirable (Nice to haves, makes the
system more attractive to the users)

Effort Estimate of the effort. Coverage of the effort is defined by the
development team or company and may include design,
implementation, test and verification. It is important that the effort is
described in terms of coverage, duration unit, and estimation method
and the same description is used for estimating for all requirements.

Skills Required skills to realize this requirement.
Status Status of the requirement; new, accepted, baselined, designed,

developed, tested, and delivered. For each status change, information
about who changed the status, when, and why the status is changed
should be kept too as well as references to any related artifacts.

Responsible
party

Responsible person for the requirement.

Date of
creation

This attribute provides the date when the requirement is created.

Parent
requirement

Unique identifier of the parent requirement.

Risks The risk associated with a requirement, if any. A quantitative
assessment of the risk and the date of the assessment are provided. Or
reference to the risk management document or tool should be provided.

Verification
method

The selected verification method for the requirement. The alternatives
are: inspection, analysis, demonstration and test. Filling this attribute
enforces the system analyst to think about the verifiability quality factor.

103

Table 3.4 – Quality Factors for Baselined FR Set

Quality Factors Description

Consistent The stated requirements do not contradict each other. Also, the
same term should be used for the same item in all requirements.

Complete The set of requirements is complete and does not need further
amplification. Completeness means that all stakeholder
interfaces are identified and quantified for all applicable
development, assembly, operations, maintenance, and disposal
phases and related operating modes.

No duplicates or
overlaps

Requirements should not overlap. They should not refer to other
requirements or the capabilities of other requirements.

A requirements management tool or a database should be used to store and

manage FRs. Requirement specifications documents should be produced as a snapshot

view of the requirements for approval, communication, and management purposes.

Other than the listed attributes, the relationship between the requirements and the

other domain entities should be stored in the mapping matrices and these matrices should

be tied to the requirements stored in the requirements management tool or the

requirements database to capture the bi-directional requirement traceability.

Any changes to the requirement attributes after the FRs are baselined should be

tracked and if necessary the person who made the change, as well as the time and reason

of the change should be documented.

3.2.4 Input Constraints

Merriam-Webster defines constraint as “the sate of being checked, restricted, or

compelled to avoid or perform some action.” The ICs are imposed externally by the

customer, by industry standard, or by government regulations and they set limits for

acceptable DPs. The ICs are developed from the CNs. The rule of thump used by the

author to distinguish constraints from requirements is that the requirements are the

desired functions that the product is expected to provide whereas the constraints are the

104

restrictions that the product must comply while providing the desired functions. For

example, keeping food at a specified temperature range is a requirement for a refrigerator

whereas the power supply (110 Volts, 50Hz.) or the footprint specification is a constraint.

There are two types of ICs:

1. Design Constraint: dictates choice of specific DPs such as materials to be

used, size, etc. For example, take the customer need, “control temperature to

desired value, in a 1000 ft3 volume.” One FR (control temperature to desired

value) and one IC (volume is 1000 ft3) can be derived from this CN.

2. Performance Constraint: dictates performance limits such as throughput,

valid range of frequency, temperature range the system must operate, etc.

For example, one CN states “system should operate between -10 to 50 °C.”

Only one IC (operation temperature is between -10 to 50 °C) can be derived

from this CN.

The design constraints directly determine the design solution or attributes of the

design solution. However, to incorporate the performance constraints, a sub FR should be

created for the DPs that the IC is allocated to.

The ICs that are derived from the CNs are first allocated to the top level DP, and

then during the decomposition, the ICs are decomposed, if necessary and allocated to the

lower level DPs. This is a formal and structured approach to manage and allocate input

constraints.

3.2.5 Requirement Matrix, R, and Constraint Matrix, C

The purpose of Equations 3 and 4 is to capture the mapping between the CNs and

the initial FRs and ICs. This mapping process is performed once before the

decomposition starts and whenever there is a change in the customer needs. The

requirement and the constraint matrices constitute the pre-requirement traceability in

APDL and provide an insight into the sources and the rationales of the FRs and ICs. In

the AD method, although the mapping between CNs and FRs/ICs is mentioned, neither

the requirement matrix, [R], nor the constraint matrix, [C] exists.

105

Suh (2001) states that in many cases, the CNs cannot and need not be

decomposed since they are often stated in terms of highest level needs. However, some of

the CNs may not be stated in terms of highest level needs and, thus, they correspond to

lower level FRs or ICs that will be satisfied by children DPs.

The FRs initially mapped from the CNs are named as “FRi#”, where “i” means

“initial” since these FRs will be integrated into the FR/DP hierarchy that will be created

by performing the top-down analysis by decomposition and zigzagging.

Table 3.5 is the proposed template for documenting the mapping of CNs to FRis

and ICs. This template captures the mapping relationships (R and C matrices) between

the customer and functional domains. It is very important that the flow of information

from one domain to another is captured and documented for better requirement

traceability and change management as well as for better impact analysis. The possible

values for the matrix elements are “0” to indicate no relationship and “X” to indicate

relationship.

Table 3.5 – Template for mapping CNs to FRis and ICs

CN ID
FRi ID FRi Description

1 2 3 4 5 .. l

FRi1 FRi1 Description 0/X 0/X 0/X 0/X 0/X

FRi2

.

.
FRim

IC ID IC Description 1 2 3 4 5 .. l

IC1 IC1 Description 0/X 0/X 0/X 0/X 0/X

IC2

.

.
ICn

106

Explanation for each element of the R and C matrices should be documented in

the template presented in Table 3.6, where i is the CN index, j is the FRi index, and k is

the IC index. This table captures the thinking behind the mapping from customer to

functional domain.

 Table 3.6 – Template for CN to FRi and IC Mapping Explanation

Ri-j/Ci-k CN to FRi and IC Mapping Explanation

Ri-j/Ci-k Mapping explanation

.

.

3.2.6 System FR/DP/SC

Some of the CNs may not be stated in terms of highest level needs and, thus,

correspond to lower level FRs or DPs. Therefore, once the CNs are mapped to FRis and

ICs, the main objective of the system, system FR, should be developed, the top level

design concept, system DP, and the top level physical system, system SC, should be

proposed. The design decomposition and zigzagging starts from the system FR/DP/SC

triplet. This helps ensure that a true top-down approach is used to analyze the system.

This triplet also serves as a means to establish scope for the system and the project. The

initial FRis should later be integrated into the FR/DP hierarchy where appropriate.

For a beverage can, there are 12 FR-DP pairs and the DPs are provided by only

three components: the body, the lid, and the opener tab [Suh, 2001, pg. 17]. If APDL is

applied to beverage can design and development, all 12 FRs would be the initial FRs and

the system triplet would be developed from these initial functional requirements and any

input constraints as:

FR1: Contain beverage for transportation, storage, and sale

DP1: A container

SC1: Aluminum can

107

By starting the decomposition from the system triplets, the FRs and DPs can be

systematically developed and the DPs can be allocated to the three components of the

aluminum can. The children FRs for FR1 could be:

FR1.1: Container shall be strong enough for transportation

FR1.2: Container shall be strong enough for storage

FR1.3: Container shall be attractive

As you can see from these FRs, the decomposition process and structure would

significantly differ from the approach presented in Suh (2001).

3.2.7 Design Parameters

The DPs are the elements of the design solution in the physical domain that are

chosen to satisfy the specified FRs. The DPs can describe conceptual design solutions,

subsystems, components, or component attributes.

Developing DPs requires knowledge, skills and creativity. Although the AD

provides the structure and guidance for decomposition and determining the quality of the

design, it does not help develop DPs. Some other methodologies, such as TRIZ, can be

used to help the designers conceive DPs for a given FR.

There are five (5) types of DPs based on the type of the physical entity that

provides the design solution stated by the DPs as explained in Table 3.7.

The objective of this classification is to help designer map the DPs to SCs. The

type of a DP can be proposed at the time the DP is developed, and then it can be updated

depending on the further design decomposition. It is a very good practice to visualize the

DPs to help verify the proposed design as well as to communicate the design with other

teammates and stakeholders. Only the DPs that are mapped to some SCs can be

visualized. The visualization can be achieved through drawings, prototypes, virtual

prototypes, or numerical models.

108

Table 3.7 – DP Types

DP Type Description

Type I
(System)

This type of DP describes the system itself, e.g., car, organization,
software application, etc. There should be only one DP, the system
DP, of this type in the decomposition.

Type II
(Conceptual)

This type of DPs describes an abstract/conceptual solution or a
design solution that is provided by multiple subsystems. If a DP is
determined to be of Type II, it should be decomposed further to
Type III, Type IV or Type V DPs.

Type III
(Subsystem)

This type of DPs describes a solution that is provided by a
subsystem of the proposed system.

Type IV
(Component)

This type of DPs describes a solution that is provided by an
individual component of a subsystem.

Type V
(Attribute)

This type of DPs describes a solution that is provided by an
attribute(s) of a component(s).

3.2.8 Design Matrix, D

Once the parent FR and DP as well as the allocated ICs to the parent DP are

given, the functions that the DP has to perform in order to achieve the parent FR and

satisfy the allocated ICs are determined and they are listed as the children FRs. The

decomposition and zigzagging continues by finding or developing DPs for the newly

established FRs The template shown in Table 3.8 can be used during the design

decomposition to document mapping between the FRs in the functional domain and the

DPs in the physical domain. The parent FR and DP are included in the table in order to

place the derived domain entities at this level in context with their parent domain entities.

109

Table 3.8 – Template for FR-DP Decomposition

ID FR DP DP Type

Parent
ID

Parent FR Parent DP Parent
DP Type

Child
ID

Child FR Child DP Child DP
Type

Child
ID

Child FR Child DP Child DP
Type

.

.
.
.

.

.
.
.

The design matrix is the same design matrix used in the AD method. The design

matrices are used to capture, present, and evaluate the relationships between the FRs and

DPs in order to determine if the design satisfies the first design axiom. However, until the

decomposition reaches the leaf level, the values in the design matrices may either show

the intention or direction of the design for the next levels of decomposition or depend on

some assumptions or constraint that the designer wants to impose on further

decomposition of the design.

At each level of decomposition, a design matrix for each FR/DP pair at that level

should be developed (Figure 3.9) and the independence axiom should be used to make

sure that an acceptable design (either an uncoupled or decoupled design) is achieved.

The possible values for the design matrix elements are:

i. “0”, meaning the DP is not used to provide the functionality stated in the

FR or the DP does not affect the other DP that is specifically developed to

provide the FR.

ii. “X”, meaning that the DP affects the FR in an un-quantifiable way since

there is not enough information yet, or

iii. “f(DP)”, A quantitative expression of the relationship between the

corresponding FR and DP.

110

FR\DP #.1 #.2 #.3 . . #.m
#.1 O/X/

f(DP)

#.2
#.3
.
.

#.n
(a)

#.1 0 / / () #.1
#.2 #.2
#.3 #.3

.

.
#. 1.

FR X f DP DP
FR DP
FR DP

FR n DP m

⎧ ⎫ ⎡ ⎤ ⎧ ⎫
⎪ ⎪ ⎢ ⎥ ⎪ ⎪
⎪ ⎪ ⎢ ⎥ ⎪ ⎪
⎪ ⎪ ⎢ ⎥ ⎪ ⎪

=⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥
⎩ ⎭ ⎣ ⎦ ⎩ ⎭

(b)

Table 3.9 – Sample Design Matrix (D): (a) Tabular format, (b) Equation format

There are three possibilities for the design matrix based on the Independent

Axiom: It can be a diagonal matrix (uncoupled design) or a triangular matrix (de-coupled

design) or any other matrix (coupled design). In an uncoupled design there is one-to-one

relationship between the FRs and DPs. In a de-coupled design the FRs can be satisfied if

the DPs are properly sequenced. A coupled design has no guaranteed point where the FRs

can be satisfied.

The master design matrix, also called the multi-layer design matrix, uses the

lowest level FRs and DPs available and establishes the relationships between them. If

individual design matrices at a certain level of the design decomposition indicate an

acceptable design for each FR/DP pair, then the master design matrix should be

developed. The master design matrix is used to determine if the overall design also

satisfies the independence axiom. It is also used to reevaluate the earlier design decisions

111

and assumptions (values set at upper level design matrix as non-diagonal elements) in

order to make sure that they are still valid. If the values are not valid anymore due to the

newly developed DPs, the non-diagonal values should be updated to reflect the new

direction and new assumptions of the design as long as the master design matrix still

satisfies the independence axiom.

If the values in the design matrix are valid under certain conditions or based on

some assumptions that the designer wants to impose on the lower levels of the design

decomposition, such conditions and assumptions should also be explicitly documented

since they act as a “system constraint” for the lower-level DPs. This documentation will

make all the design decisions and assumptions readily available for re-evaluation and for

communication among the stakeholders. For example, D2.1.2-2.1.3 is set to “0” based on the

assumption that the heat generated by DP2.1.3 will not affect DP2.1.2, and in turn

FR2.1.2. This assumption is at the same time a system constraint and the lower level DPs

that will be developed should satisfy this constraint.

The template provided in Table 3.10 can be used to document the reasoning for

the non-zero elements of the design matrix as well as any assumptions or conditions for

both zero and non-zero elements. Di-j in Table 3.10 is the design equation element for FRi

and DPj.

Table 3.10 – Template for Design Matrix Element Explanation

Di-j Explanation

D# -# Explanation of the design matrix element

 If an overall acceptable design is achieved, the decomposition may proceed,

otherwise, the proposed DPs should be revisited to satisfy the independent axiom. The

system design can be said to be completed once the leaf-level DPs are specified well

enough to either implement (produce/manufacture/code/etc.) or to procure them whether

they are subsystems or components.

112

When the detailed design is completed and the FR and DP hierarchies are

obtained, the information axiom is used to find the best design solution among alternative

designs.

3.2.9 Input Constraint Allocation Matrix, CA

Another important issue during FR-DP decomposition is to make sure that the

input constraints are satisfied by the proposed design. At each level of decomposition, the

ICs should be analyzed before and after developing the DPs to determine if the proposed

solution satisfy the ICs and also allocate them to the new sub-DPs.

All of the ICs are first allocated to the system DP. The sub-DPs inherit the ICs as

the decomposition process proceeds. IC(s) are inherited to the sub-DPs in two ways:

i. An IC is inherited fully (as is) to each or some of the derived DPs that has to

comply with the IC. For example, if an aircraft has to operate in a certain

temperature range, each subsystem and component has to operate in the same

temperature range. Therefore, this operation temperature related IC should be

assigned to the overall system, then to each and every subsystems and

components of the system that are sensitive to environmental temperature.

ii. An IC is decomposed into derived ICs based on the derived DPs and each

derived IC is assigned to the related derived DPs in order to clearly describe

exactly what is expected of the DP in achieving the specific IC. For example,

if the total weight of the system is set as an input constraint, this IC should be

decomposed and allocated to each subsystem, and then to each component.

Another example is that if there is a standard that the product has to comply

with, the constraint of complying with the standard is first allocated to the

system DP, but in each level of decomposition, specific conditions of the

standard are identified and allocated to individual sub DPs.

In order to support IC tracking and allocation, the allocation information is stored

in a matrix format. With this format, ICs that are allocated to a specific DP can easily be

113

determined. As the designers decompose the design into lower levels, the ICs become

more refined and solution specific.

The template for IC analysis and allocation is presented in Table 3.11. In the DP-

IC Table, “X” indicates that the IC is inherited by the sub-DP as a whole and “O”

indicates that the IC does not apply to the sub-DP.

In the second case of inheritance, the sub-ICs should be identified first and those

IDs (e.g., IC1.1, IC1.2, etc.) of the newly created ICs should be used in the mapping

instead of the parent IC ID.

Table 3.11 – Template for DP-IC Allocation

DP\IC # # #

Explanation for each element of the constraint allocation matrix can be

documented using the template presented in Table 3.12 where i is the IC index and j is

the DP index.

Table 3.12 – Template for DP-IC Allocation Description

CAi-j Allocation Explanation

CA# -# Explanation of the reasoning for IC allocation

The IC allocation with the master design matrix allows designers working on a

particular subsystem have a clearly articulated set of constraints to which their designs

must conform.

114

3.2.10 System Components

The SCs are the physical entities that provide the design solutions described as

DPs. The hierarchical collection of the SCs forms the system physical architecture. The

SCs are either produced or selected from commercially available alternatives.

Three types of elements are defined for the system physical architecture

hierarchy: (i) system, (ii) subsystems, and (iii) components where components are the

lowest physical elements and may have multiple attributes as shown in Figure 3.3.

Description for each element is given in Table 3.13.

System

Subsystem 2 Subsystem 3Subsystem 1

Component 2 Component 3Component 1

Component
Attribute 2

Component
Attribute 3

Component
Attribute 1

Figure 3.3 – System Physical Architecture Template

Table 3.13 – System Physical Element Descriptions

Type Description
System The system consists of multiple subsystems, e.g., automobile,

organization, software application, etc.
Subsystem A subsystem may consist of multiple subsystems or components, e.g.,

engine, finance department, graphical user interface (GUI), etc. A
subsystem is considered as a component if it is commercially available.

Component Component is the lowest level of separately identifiable physical entity,
e.g., piston, chief financial officer (CFO), button on a GUI screen, etc.

Component
Attribute

Component attribute is a characteristic of a component, e.g., length of the
piston, responsibility of the CFO, screen size, etc.

115

Some complex systems may require more than three layers to properly define the

physical architecture. INCOSE (1998) defines six (6) layers of physical architecture

hierarchy other than the system itself: segment (element), subsystem, assembly,

subassembly, component, and part. In such cases where there are more than three layers,

sub-types for Subsytem can be created to map the DPs to individual subsystem levels.

During the FR-DP mapping and decomposition, the SCs that will provide the

design solutions, stated as DPs, should also be defined. However, there may not be one-

to-one relationships between DPs and SCs since Type II DPs do not have any

corresponding physical entities and Type V DPs are provided by the attributes of the

components. Furthermore, one SC may provide the design solutions described by

multiple DPs. On the other hand, there could be multiple Type V (e.g., Component

Attribute) DPs that will be assigned to a single component.

Even if the solution expressed in a DP is commercially available, be it a

subsystem or a component, that DP should be decomposed further to determine the

attributes of the item in order to produce a purchase order.

If a portion of the work (single DP, or DPs), including design, is contracted out,

then, the FR-DP pair along with the allocated ICs and system constraints should be

documented and delivered to the contractor. When the design of that portion is finalized,

the master design matrix for the system should be formed with the new design to

determine if the over-all design is acceptable.

The SC numbering depends on the system physical architecture, not on the

corresponding DP numbering. Therefore, in parallel to FR-DP decomposition, the SC

hierarchy and numbering should be established.

The DP to SC mapping is initially performed during the top-down design

decomposition in order to identify the possible SCs to provide the design solutions stated

as DPs. However, once the lowest level DPs are developed, then the initially identified

SCs should be re-evaluated and finalized from bottom-up. The objective of the top-down

116

initial identification is to help visualize the DPs at the time of DP development as well as

to determine if the proposed DP is producible.

The SC hierarchy lands itself to many physical component based analysis

including Design Structure Matrix (DSM), Failure Modes and Effect Analysis (FMEA),

functional reliability analysis [Trewn and Yang, 2000] and cost analysis [Jeziorek, 2005].

3.2.11 Process Variables

The Process Variables (PVs) define the processes to produce the system

components (SCs), be it a subsystem or a component. Other discipline specific terms,

such as manufacturing, coding, and implementing, can be used in place of “produce.” All

of them refer to the process of realizing the entity that provides the solution stated as DPs

and in turn provides the functionality stated in the related FRs.

One PV should be developed for each SC except for the “component attribute”

type SCs. For “component attribute” type of SCs, the PV is a list of special conditions,

process parameters, or requirements for the PV developed for the component There are

three types of PVs, 1) the process of production of an individual component, 2) the

process of assembling or integrating the components to produce a subsystem or

integrating subsystems to produce another subsystem or the system, and 3) purchase

order for a COTS subsystem and component.

Like the AD method, the design approach used in the APDL is top-down. During

the top-down design decomposition, the PVs should be drafted for each SC in order to

take in to account the concerns about producing the SC and help determine if the

proposed SC is producible. However, a bottom-up approach is required to re-evaluate

and finalize the PVs since the assembly/integration process cannot be completed before

the details of the components are developed and the producibility of those components is

established.

117

Table 3.14 – SC-PV Mapping Rules

Type Description

System The PV for this type of DP is the assembly/integration process to put
together the subsystems to form the system. Whenever a system is
conceptualized, a draft PV should be developed, and this PV will be
completed when the subsystems are finalized.

Subsystem The PV for this type of DP is the assembly process to put together the
subsystems or components that form this subsystem. Whenever a
subsystem is identified, a draft PV should be developed, and this PV will
be completed when the subsystems/components are finalized.
The PV for a commercially available (COTS) subsystem is a purchase
request.

Component The PV for a component that needs to be produced is the process used to
produce the component. Whenever a component is identified, a draft PV
should be developed, and this PV will be completed when the component
attributes are finalized.
The PV for a commercially available (COTS) component is a purchase
request.

Component
Attribute

The PV for this type of DP is a list of special conditions, process
parameters, or requirements for the PV developed for the component.

3.2.12 System Structure Matrix, SS, and Process Matrix, P

After the FR-DP decomposition is complete for each level, the SCs and PVs

should be developed for the newly developed DPs. This analysis helps develop the

system physical architecture for visualizing the DPs and also helps determine if the DPs

are producible.

The template shown in Table 3.15 can be used for SC and PV mapping. The SC

and PV IDs are identical due to the underlying assumption of one-to-one relationship

between the SCs and PVs except for the “component attribute” type SCs. In the template,

the SC name and the title of the PV should be documented. The parent SC and PV are

included in the tables in order to place the derived domain entities at this level in context

with their parent domain entities.

118

Table 3.15 – Template for DP-SC-PV Mapping

DP ID DP
Type

SC/PV
ID

SC Name PV Title

Parent
DP ID

Parent
DP Type

Parent
SC ID

Parent SC Parent PV

Child
ID

Child
DP Type

Child
SC ID

Child SC Child PV

Child
ID

Child
DP Type

Child
SC ID

Child SC Child PV

.

.
.
.

.

.
.
.

.

.

The relationship between DPs and SCs can be one-to-one, many-to-one, or one-

to-many, i.e., one SC can alone provide the design solution stated in a DP or multiple

DPs whereas multiple SCs together provides a design solution. Therefore, a separate DP-

SC matrix should be developed to present the relationships between the DPs and SCs.

If a Type III DP has some Type V children DPs, the component of the parent DP

has to be developed/identified first, and then the attributes of the components are mapped

to the Type V children DPs. In this case, the components are listed in the DP-SC-PV

table and they are mapped to the parent DP in the DP-SC matrix. The case study

presented in Section 4 has such an example. Table 3.16 is a template for the DP-SC

matrix.

Table 3.16 – Template for DP-SC Mapping

DP\SS 1.1 1.2 1.3 1.4 . . n
1.1 0/X 0/X 0/X 0/X 0/X
1.2 0/X 0/X 0/X 0/X 0/X

1.3 0/X 0/X 0/X 0/X 0/X
1.4 0/X 0/X 0/X 0/X 0/X
.
.

m 0/X 0/X 0/X 0/X 0/X

119

One PV is developed for each SC except for the attribute type SCs. Therefore, the

relationship between the SCs and PVs is one-to-one and there is no need to create a

separate process matrix since the template provided for DP-SC-PV mapping provides the

same information.

3.2.13 Functional Test Cases and Functional Test Matrix, FT

The functional test cases (FTCs) are developed to verify that the system satisfies

the top level FRs that are documented in the requirement specification (RS) document.

Therefore, once the FRs are baselined (i.e., a set of verifiable and attainable FRs are

obtained) and the detailed design is completed, the FTCs should be developed to fully

cover all the baselined FRs. The FTCs are executed during the final acceptance test.

The functional test matrix shows the relationships between the FTCs and the FRs

that are documented in the RS document. The possible values for the matrix elements are

“0” and “X” to indicate whether the FTC will verify if the FR is satisfied by the system or

not. An FTC can verify a single FR or multiple FRs, but the ideal case is each FR is

verified by only one FTC. Table 3.17 shows a template for developing the functional test

matrix.

Table 3.17 – FTC Mapping Table Template

FR ID FTC
ID FTC Name

1 2 3 4 5 .. k

FTC# FTC name 0/X 0/X 0/X 0/X 0/X

FTC#

.

.
FTC#

The template for documenting both the FTC and the CTC is the same as explained

in Table 3.18.

120

Table 3.18 – FTC and CTC Template

Attribute Description

Test Case ID Unique test case identifier.

Name Short name for the test case

Subsystem/Component
under test

The identifier of the SC under test.

FRs to test for The identifier of the allocated FRs to be tested

ICs to test for The identifier of the allocated ICs to be tested

Assumptions and
constraints

Any assumptions made or constraints imposed on the test
case due to the system, test environment, or resources.

Prerequisite conditions Any prerequisite conditions that must be established prior to
performing the test case.

Test inputs Any test inputs necessary for the test case.

Test procedure Step-by-step description of the test procedure. For test each
step, action, expected result, and analysis procedure that
should be used to analyze the test results should be
documented.

3.2.14 Component Test Cases and Component Test Matrix, CT

The component testing is performed to verify and validate that a subsystem or a

component level SC successfully satisfies the FRs and design ICs allocated to them. At

least one CTC should be developed for each Type III and IV SC. One CTC can be

developed for each characteristic of the component such as testing the performance of the

component under fatigue, vibration, shock, pressure, extreme temperature, humidity, etc.

or one CTC can test all the characteristics of a SC. The CTCs are drafted during the top-

down design decomposition. Developing the draft CTCs will help take into consideration

of testing concerns in order to make sure that the developed FRs are testable and the

proposed design is realistic. Once the design decomposition is finalized (leaf level DPs

are developed), first the SCs should be finalized, and then the CTCs should be finalized.

Successful completion of the SC production is determined by running its corresponding

121

CTC. The template for describing the CTCs is the same as the template for the FTCs and

presented in the previous section.

The success of distributed design and development efforts for complex systems

depends on proper FR and IC allocation to individual SCs and rigorous component

testing.

 The testing for components (Type IV) can be named “component testing”

whereas the testing for subsystems (Type III) can be called “integration testing” since the

subsystems are composed of more than one subsystem or component. In this dissertation,

only the term “component testing” is used for the sake of simplicity.

The component test matrix shows the mapping between the SC and the CTC IDs.

The possible values for the matrix elements are “0” to indicate no relationship and “X” to

indicate relationship. Table 3.19 shows a template for the component test matrix.

Table 3.19 – CTS Mapping Table Template

SC ID CTC
ID CTC Name

1 2 3 4 5 .. k

CTC# CTC Name 0/X 0/X 0/X 0/X 0/X

CTC#

.

.
CTC#

The type of tracking provided by the APDL model would assists component

testers with their testing, so they can see what part their module plays in the big picture of

the system, based on requirements. While testing, if a defect is found, and the low level

component is known as the failure point, it can be determined what high-level

requirement would then not be satisfied if it were not repaired. With this known, an

educated decision can be made whether or not to correct the defect, depending on the

priority and importance of the high-level requirement.

122

3.3 APDL System Architecture

The term ‘system architecture’ can be named and defined in many different ways.

Ulrich defines “product architecture” as the scheme by which the function of a product is

allocated to physical components [Ulrich, 2000]. INCOSE defines “system architecture”

as the arrangement of the elements and subsystems and the allocation of the functions to

them to meet the system requirements [INCOSE, 1998]. In the AD, the system

architecture is defined as the hierarchical collection of FRs and DPs, and design matrix

generated during decomposition and zigzagging. It is captured in AD as sets of functional

requirements (FRs), design parameters (DPs), constraints, and design matrices (DMs) in a

hierarchical arrangement. It is the aggregation of all of the design decisions during the

decomposition and zigzagging [Hintersteiner and Tate, 1998; Lee, 1999]. The AD system

architecture is explained in detail in Section 2.3.3.

In this research, the AD SA model is extended to include the SC hierarchy.

Instead of FR/DP pairs, FR/DP/SC triplets are used in the system architecture. Appendix

B presents the system architecture of the case study.

Other than adding the SC hierarchy (system physical architecture), the aspects of

the Axiomatic Design System Architecture concept is kept the same in APDL, that is, the

module-junction and the flow diagram are unchanged.

The objective of developing the system architecture in APDL is to capture the

requirements, design, and components of the system and the inter-relationships among

them in a logical, coherent, and comprehensive manner, in order to facilitate

communication between engineers, managers, and other stakeholders including the

customer, and to provide good technical documentation of the design decisions made and

the reasoning behind them.

Since the system architecture generated by APDL highlights the relationships

between the FRs, DPs, and SCs, it can be used to evaluate the impact of proposed design

changes as well as requirement changes. Therefore, the SA makes it possible for the

product designers and customers to make more informed decisions as to whether or not to

pursue the proposed changes.

123

The strength of the system architecture is that, in addition to the operational flow

of the system, it also captures the order in which design decisions have to be made, and

indicates how the alteration of one part of the system can potentially impact other parts.

[Tate, 1999]

The SA can also be used in diagnosis of system failure, in job assignment and

management of the development team, distributed systems, and system design through

assembly of modules [Suh, 2001].

3.4 APDL and Requirement Management

Requirement management activities greatly benefit from the application of the

AD method in product design as explained in Section 2.5.1. However, as noted in Section

2.5.1, the AD method does not fully support the three requirement management

objectives since the AD does not cover all of the product development lifecycle domains

and the mapping between the DPs and the physical components is not established. The

APDL model, with the test domain, the input constraint vector, the system component

vector, the requirement template, and the proposed requirement and requirement set

quality factors, helps achieve all three objectives of requirement management, that is, to

capture the requirements right, to manage changing requirements, and to align the system

development lifecycle activities with the requirements. The use of the APDL model

should help overcome all the problems listed in Section 2.1.1.3 by supporting all three

objectives of requirement management.

The requirement description template presented in Section 3.2.3 provides

guidance in standardizing the requirements analysis process and also can be used as a

checklist to make sure that enough information is gathered about the requirements. The

FR hierarchy of the APDL model along with the requirement template and the list of the

input constraints can be used to develop the requirement specification document. The end

product and all of the components can be tested against the allocated requirements and

constraints easily since the APDL mapping matrixes can provide the traceability of each

design solution and each component to requirements and input constraints.

124

In the APDL model, the requirement matrix constitutes the pre-RT, and the other

matrices constitute the post-RT. Requirements can be traced back to the customer needs

and forward to DPs, SCs, PVs, CTCs, and FTCs. This makes sure that the system

development activities can be aligned with the established and agreed-upon requirements

and also any change in customer needs or requirements can be traced in both directions to

assess the impact of the requirement change.

It is known that the RT problems are an artifact of informal development methods

[Gotel and Finkelstein, 1994]. Therefore, implementing the APDL approach for product

design and development would solve most of the problems faced by the development

team as far as requirement traceability is concerned. Implementing APDL would also

lessen the investment for RT since APDL provides the foundation and the links required

for the RT activities as a by-product [Gumus and Ertas, 2004; Gumus et al., 2002].

Another important factor affecting the PDL is the communication between all the

stakeholders, especially for large complex development efforts. When a system is

sufficiently large and complex, the PDL activities, including design effort, must be

distributed among several development teams, which may be located in different

locations. Communication of requirements and constraints as well as other design and

development related knowledge among all the development teams and other stakeholders

is crucial for two reasons: 1) to align all the development activities along with the agreed

upon requirements and constraints and 2) to share the big-picture view of the system so

that local efforts to optimize design do not hinder the overall optimization and

performance of the system.

 Communication during requirement analysis is as important as communication of

the design knowledge since the functional requirements form the foundation of the PDL.

Effective communication between the stakeholders during requirement analysis prevents

a lot of problems such as vague or misunderstood requirements, schedule conflicts, and

reworks, thus shortens the development time and reducing the development cost. The

requirement specification created from the FR hierarchy, the FR template, and the input

125

constraint list will provide an effective tool for communication of the product

specifications.

3.5 APDL and Other Design Methodologies

The APDL approach provides a very robust structure to incorporate other generic

or discipline specific techniques to improve the robustness and quality of the design as

well as help with project management.

Each design and analysis tool and method requires different types of inputs from

the product development knowledgebase. The APDL system architecture stores and

presents the product development knowledge in an organized manner with relationships

between the domain entities. In addition, the recommended templates of APDL

standardize the knowledge capture and presentation; and make it easy to use, re-use, and

share the knowledge.

Since the APDL has more coverage than the AD as far as the product

development activities are concerned, the APDL model supports more tools and

methodologies than the AD approach does such as physical component related

methodologies (DMA, reliability, etc.) and test related analysis (test coverage, test

completeness, etc.).

In Section 2.3, some design and analysis techniques and methodologies were

briefly defined and comparison between the AD method and them are made. The

comparison between the following three methods and AD applies to the APDL model.

1. The Theory of Inventive Problem Solving (TRIZ):

2. Quality Function Deployment (QFD)

3. Robust Design

The APDL model provides better support for the following three methods than

AD does:

1. Concurrent Engineering (CE): Since APDL covers the test domain and also

has more guidance on documenting the development lifecycle knowledge,

engineers will be able to communicate better and handle test related

concerns better. Also, in APDL, the PVs are tied to the SCs instead of the

126

DPs; therefore, manufacturing concerns can be better addressed by tracking

them to the components instead of design solutions (DPs) that may be

satisfied by multiple components or by just one attribute of a component.

2. Design for X (DfX): The APDL can be used with any DfX methods. Unlike

AD, with the inclusion of the test domain, APDL provides better support for

Design for Test method.

3. Failure Mode and Effect Analysis (FMEA): In APDL, the SCs and their

relationships with the DPs and the PVs are captured; therefore, the failure

modes can be traced to the components instead of design solutions (DPs).

The failure modes can also be traced to the component test and/or

functional test cases to improve testing. With the SCs, Design Structure

Matrix analysis can be applied to the system components to identify inter-

dependencies that can cause potential failures.

The additional methodologies that the APDL model supports are explained in the

following sections.

3.5.1 Reliability Engineering

The APDL model provides the system component hierarchy that can be used to

obtain the relationships between the components for reliability calculation.

The FR to SC relationship is important for functional reliability calculation

[Trewn and Yang, 2000] and making sure that most important functions are provided by

most reliable components. It would help determine where redundancy or high reliable

components needed to make sure that the important functions are always provided.

3.5.2 Design Structure Matrix

Design Structure Matrix (DSM) [Steward, 1981] maps the relationships or

channels of communication between tasks. The DSM method describes the product

development process in an iterative manner. Browning (1998) extended DSM method in

his PhD thesis to model the iteration of program schedule and cost.

127

A DSM is a square matrix with identical row and column labels as presented in

Figure 3.4. In the example DSM, elements are represented by the shaded elements along

the diagonal. An off-diagonal mark signifies the dependency of one element on another:

reading across a row reveals what other elements the element in that row provides to;

scanning down a column reveals what other elements the element in that column depends

on. Thus, in Figure 3.4, element B provides something to elements A, C, D, F, H, and I,

and it depends on something from elements C, D, F, and H [Browning, 2001].

Figure 3.4 – A sample DSM [Browning, 2001]

DSM analysis can be performed on the system components to display the

relationships between components of a system in a compact, visual, and analytically

advantageous format for functional reliability calculation [Trewn and Yang, 2000] or for

change impact analysis [Jeziorek, 2005]

3.6 APDL and Change Management

How applying the AD method to product development makes change

management easier and more robust is explained in Section 2.5.2. Since the APDL is

developed based on the AD, it inherits the same benefits as far as the change management

concerned. Moreover, the APDL model covers more domains and more characteristic

vectors than the AD model. Therefore, the APDL system architecture provides the

structure for better change management. The APDL system architecture makes it possible

to easily perform impact analysis, and other required analyses such as FMEA, reliability,

128

etc. both during the development lifecycle and after the product is deployed. As a result,

the APDL system architecture can allow stakeholders to understand the proposed changes

and make more informed decisions as to whether or not such changes should be pursued.

3.7 APDL and Project Planning/Scheduling

Steward and Tate (2000) and Braha (2002) proposed to integrate AD into the

process of project planning and task assignment for software development projects. The

DPs were loaded into a project Gantt chart as tasks along with the dependencies from the

design matrices. By adding time estimates to the individual tasks and making

assumptions about the resources allocation, the Gantt chart takes on a common

appearance of tasks distributed over time with internal dependencies [Steward and Tate,

2000].

Although the above-mentioned efforts were for software development, the author

of this research believes that the same concept can be used for developing the WBS,

schedule, and plan for any product development effort. No matter what the product is, a

plan has to be prepared to guide and monitor the development and testing effort.

The APDL model provides the foundation to help develop project schedule and

planning for any product development effort. The APDL model also resolves some of the

concerns and issues identified in Steward and Tate (2000).

Steward and Tate point out “…multiple DPs may be physically integrated into a

single component. … However, it would be erroneous to list a task creating that

component more than once in the project plan. Therefore, the task list in the project plan

must be consolidated to remove redundant listings. … but being careful to preserve all

dependency links in the single remaining task representation.”

This problem can be overcome by developing the project schedule based on the

SCs of Types “component”, “subsystem”, and “system” and on the CTCs and FTCs

instead of the DPs, after all, the developers will produce the SCs that will provide the

design solution expressed in DPs and then test these to make sure that the requirements

and the input constraints are satisfied. The subsystem and system type DPs will be used

129

as “integration” or “assembly” tasks and test cases will be used as test tasks in the testing

phase. Since the schedule is based on the SCs and the test cases, there will not be any

redundant or duplicate tasks and also system integration/assembly and testing tasks are

properly considered in the schedule.

In addition to the process matrix, Design Structure Matrix analysis can be

performed on the SCs to find out the relationships and dependencies among them to help

determine if the tasks can be performed in parallel or in series.

Another advantage of this approach is the ability to keep the relationships

between the tasks and the FRs. This would address the other concern point out by

Steward and Tate: missing the one-to-one mapping of tasks to FRs. It is very important to

be able to see relations between the tasks and the FRs for couple of reasons:

1. Each activity can be traced back to a FR so that every body knows that the

purpose of the tasks

2. Making sure that the important FRs are satisfied first. This would help

determination of interim milestones.

 The last concern that the APDL model can address is rolling the lower level DPs

into higher level ones since the lower level DPs are just properties of the higher level

DPs. In APDL, the lowest level SC is of type “component attribute” but these SCs are not

used as tasks in developing the project schedule. As a matter of fact, these SCs do not

have corresponding PVs either, they only determine the parameters of the parent SC’s

PV.

3.8 Discussion

The AD method provides a robust structure and systematic thinking to support

design activities, however, it does not support the whole product development lifecycle.

The same logic and scientific thinking is used and extended to capture, analyze, and

manage the product development lifecycle knowledge.

The APDL approach, like the AD method, can be used in design and development

of products, systems, services, and organizations in many different disciplines.

130

Seven new theorems have been developed. These theorems are the cornerstones

of the APDL model and have significant implications for the continued application of

axiomatic design. They streamline the process of applying axiomatic design to product

development, therefore increasing the likelihood that products will be designed to meet

their needs correctly. The theorems are listed in Appendix A.

The product development process proposed by Tate and Nordlund (1996) is an

activity based model that is based on AD and describes specific activities that need to be

performed and their sequence for new design and re-design efforts. Although it provides

more guidance in terms of product development process and activities proposed to come

up with anew design or re-design, it does not introduce new vectors or domains.

Therefore, it does not address the issues with AD application to product development

lifecycle, such as, not covering the test domain, not capturing the components, etc.

The APDL model introduces new tables and templates for documentation of the

knowledge produced during the product development lifecycle. All the matrices, tables,

and templates may seem somewhat cumbersome to implement. Manual implementation

of APDL may really be cumbersome; therefore, software tools should be developed to

support the implementation. However, documenting the knowledge produced and gained

during the product development lifecycle is very important for many reasons, such as,

communication between the stakeholders, project management, traceability of decisions,

reuse, troubleshooting, re-engineering, etc.

3.8.1 Management of Input Constraints

The process of managing and allocating ICs in APDL slightly differs from the

approach proposed by Friedman et al. (2000) as explained in Table 3.20 although they

both provide a systematic way of managing, refining, and allocating the constraints.

Briefly, the APDL approach provides better traceability of ICs with the constraint [C] and

constraint allocation [CA] matrices and uses a clearer guide to distinguish requirements

from constraints.

131

Table 3.20 – Comparison of Constraint Management and Allocation Approaches

Approach by Friedman et al. (2000) APDL Approach
Mapping between CNs and constraints is
not captured.

Constraint [C] matrix captures the mapping
relationships between the CNs and the ICs.
This provides better traceability and
knowledge management.

Constraints are related to FRs. The ICs are allocated to the DPs and this
relationship is captured in the constraint
allocation [CA] matrix. Designer,
implementer, and tester find out easily
what the allocated ICs to the component
that they are working on.

Distinguishing FRs and Constraints:
• FRs are stated as verb-noun pairs
• FRs are formulated so that a single DP

can be selected to satisfy that task.
• FRs, by their definition, should be

solution-neutral

Distinguishing FRs and Constraints:
The requirements are the desired functions
that the product is expected to provide
whereas the constraints are the restrictions
that the product must comply while
providing the desired functions.

Has three types: critical performance
specifications, interface constraints, and
project constraints.

Has two types: design constraints and
performance constraints. Project constraints
are not related to the product and should
not be incorporated in to the design
decomposition.

3.8.2 Introduction of System Components

The DPs are the elements of the design solution in the physical domain that are

chosen to satisfy the specified FRs. The DPs can describe conceptual design solutions,

subsystems, components, or component attributes. The DPs do not correspond to

components as exemplified by the beverage can example in Suh (2001) pg. 17. Therefore,

the DP hierarchy is not a representation of the component hierarchy for a product. In

order to systematically develop/identify components and capture and represent the

physical decomposition of the system for documentation, reuse, and analysis purposes,

the component vector and its decomposition have to be integrated into the AD

framework.

132

Some authors added the “component domain” to the AD framework to identify

the physical components that made up the product for different reasons. Trewn and Yang

(2000) replaced the process domain with the component domain in order to relate the FRs

to the components for functional reliability calculation.

Bulent et al. (2002) and Bulent and Ertas (2004) suggested adding a component

domain to the AD model for better requirement management by capturing the

requirement traceability to the system components. These two papers were results of

early research for this dissertation.

Jeziorek (2005) introduced cost units (CUs) (or physical components) for tracking

changes to the CUs in order to calculate the cost of a proposed change. He proposes that

once the decomposition process is completed, all of the physical components, or costing

units (CUs), must be identified.

Do (2004) suggested adding a product structure domain to the AD framework for

software projects. However, there are no specific guidelines on how the mapping is

performed between the DPs and the components and also the PVs are still for the DPs in

this model.

The APDL model introduces the system component vector in the physical domain

along with the DPs and captures the mapping from DPs to SCs and from SCs to PVs

throughout the decomposition and zigzagging process. Unlike the traditional AD

approach, the APDL model relates the PVs to the SCs not to the DPs since the PVs are

used to produce the SCs that provide the design solutions expressed as DPs. For example,

a DP may state the minimum strength required from an element, but an attribute type SC

defines the material to be used. The PV will use the specified material (attribute type SC)

to produce the component (component type SC) in order to provide the design solution

stated in the DP.

In addition, the mapping from DPs to SCs is not an after-the-fact type of mapping.

The SCs are identified/developed during the deign decomposition process in parallel to

the FR-DP decomposition.

133

The APDL system architecture contains the SC hierarchy in addition to the FR

and DP hierarchies. This helps communicate the component specific knowledge between

the product stakeholders.

Capturing and presenting the components and their relationships with the design

solutions and the process variables help the development team in many ways:

i) Help visualize the design solutions during the design decomposition and

zigzagging process.

ii) Analysis methods and techniques such as DSM, FMEA, and functional

reliability can be easily applied using the system architecture provided by

the application of APDL.

iii) Problems and complaints about a specific component can be traced back to

the proposed design solution and then back to the functional requirement.

iv) Requirement and design changes can be traced to the components to assess

the impact.

3.8.3 Introduction of Test Domain

Although some of the authors explained the benefits of AD for testing activities

and Do (2004) suggested adding a test case domain, the APDL model introduces the “test

domain” with two characteristic vectors: component and functional test cases. The

component test cases (CTCs) are for each and every SCs to verify them to make sure that

they satisfy the allocated requirements and constraints before they are

integrated/assembled into the next higher level SC. There are two main benefits of having

the CTS vector in the model:

1. To encourage designers to make sure that the SC is designed to meet the

allocated FRs and ICs by developing the CTCs

2. Catching defects in the design or implementation as soon as possible,

preferably before integration and causing other SCs to fail so that rework

and required modification can be performed earlier to cut down the rework

cost and reduce the lead-time.

134

The functional test cases (FTCs) are developed for each baselined FR to verify to

the customer that the agreed-upon requirements are satisfied by the product.

135

CHAPTER IV

IV CASE STUDY: DEVELOPMENT PROCESS

FOR AN AVIONICS SYSTEM

An avionics system that was designed using the waterfall product development

lifecycle model with Military Standard for Software Development and Documentation

(MIL-STD-498) and the product development lifecycle process are studied. Then, the

APDL is used to redesign a portion of the system to prove that a better system could have

been developed if the APDL model had been used. Another objective of the case study is

to further explain the APDL model and its application.

If the APDL approach were to be used instead of the ad-hoc design approach

actually used during the design and development of the system, some of the mistakes

could have been avoided. The structure that the APDL provides increases the visibility

into design process and decisions so that all the functional requirements and the input

constraints are properly satisfied by the end product.

4.1 Background

The avionics system used in this research is an onboard system that monitors

various test points throughout the aircraft [Cicek and Ertas, 2004]. The information

gathered from the test points is used to provide trending analysis of performance of the

aircraft and to aid the flight engineer with troubleshooting in-flight problems. The heart

of the system is the central data collector and analyzer. The recorded flight data is later

processed by a ground system where flight reports can be generated and displayed upon

request.

The legacy system consists of a controller as the operator-input interface, a

display unit as the primary output interface between system and the operator, a data

collector, analyzer and recorder, and a printer.

CASE STUDY: DEVELOPMENT PROCESS FOR

AN AVIONICS SYSTEM

136

The goals of the redesign effort were to modernize the system while replicating the

functionality of legacy system and to increase data processing, memory and data storage

capacity.

The new system is a portable ruggedized computer and a printer. The computer

replaces the controller, display unit, and the data recorder. This modernization effort was

estimated to pay for itself in four years.

The portable ruggedized computer has been environmentally tested by the

manufacturer. The computer meets or exceeds the following requirements of RTCA/DO-

160D, Environmental Conditions and Test Procedures for Airborne Equipment with a

deviation of 0˚C lower operating temperature.

RTCA/DO-160D Test
Section Category

Temperature and Altitude 4 A4
Temperature Variation 5 C
Humidity 6 A
Shock 7 A
Vibration 8 S
Sand and Dust 9 E
Power Input 16 E
Voltage Spike 17 B
Audio Frequency Conducted Susceptibility 18 E
Induced Signal Susceptibility 19 B
Radio Frequency 20 S
Electrostatic Discharge 25 A
Operational Safety and Crash Safety (Workstation Mounting
Fixture)

7 E

A waterfall PDL model that consisted of five phases; planning, requirements

analysis, design, implementation, and testing phases, was used during the development of

the system. The design phase had two sub-phases: preliminary design and detailed

design. The MIL-STD-498 Software Development and Documentation Standard was

used as a guidance for the product development process. The baselined requirements

were collected in a System Requirements Specifications (SRS) document, and then

preliminary design was presented in a System/Subsystem Design Description (SSDD)

137

document. The detailed design was explained in a System Design Description (SDD)

document. The test descriptions were documented in a System Test Description (STD)

document.

Although the effort was mostly a successful effort and saved the customer greatly

and the new system was much more affordable, more functional, and more flexible than

the legacy system, some problems were experienced during the project and the system

had some defects [Cicek and Ertas, 2004]. Most of the problems faced can be traced back

to the development model and processes used during the system development lifecycle.

The product development model used lacked the rigor and structure that is needed during

requirements analysis and design.

The requirement analysis was performed while staying in the functional domain

without zigzagging between the functional and the physical domains. Therefore, the

assumptions and decisions that were made about the physical domain during the

requirements analysis phase were not documented at all or were documented as part of

the requirement statements. There was no clear distinction between requirements and

design solutions. Ultimately this resulted in few requirements and design problems.

Some of the requirements were missed, some were misunderstood, and yet some

were not understood correctly. Also, the input constraints were not tracked properly and

at the end, the product did not meet some of the input constraints. Since the requirement

analysis and decomposition were not done properly, the design was not detailed enough.

There was no adequate requirement traceability between the requirements and the design.

The system test did not have full coverage due to the lack of traceability of the

requirements and input constraints throughout the development lifecycle.The initial effort

and cost estimates were not accurate due to defects in requirement analysis and design.

Although the laptop was tested by the manufacturer, no shock or vibration tests

were performed after the laptop was modified to satisfy some functional requirements

such as securing the laptop to the flight engineer’s desk. Also, after the units installed on

the airplanes, there were instances that the monitors did not display the programs

properly during intense vibrations. Some of the problems of the system were:

138

1) LCD screen is exposed to the vibration and shock experienced by the aircraft

due to the mounting fixture used to secure the screen.

2) User cannot access the ports to connect a mouse or USB flash memory cards

for data transfer

3) The vibration test did not comply with the applicable standard; 1 hr of

vibration test was required but the test was for only 5 minutes.

All of the problems faced during the development effort and later when the

system is deployed in the field show that the system development process did not provide

the rigor and structure to systematically analyze the requirements, develop the system

design, implement the design, and properly test the system.

4.2 Applying the APDL Approach

In this section, the APDL approach is used to partially redesign the system

explained in the previous section. Comparison is made between the APDL and the

product development approach used to prove that a higher quality product with fewer

defects could have been produced if the APDL approach had been used.

We will start with identifying the customer needs and then go through the

development process step-by-step for only a portion of the system in order to keep the

example simple but detailed enough to explain the APDL

1.1.1 Customer Needs

The very first step of the product development lifecycle is to gather the customer

needs (CNs). The CNs are obtained from the conversation with the system users and

aircraft maintainers. Later, different stakeholders are contacted to clarify the needs. Due

consideration was given to the unstated or unspoken needs too. The customer needs for

this effort are listed in Table 4.1.

139

Table 4.1 – Customer Needs (CNs)

CN
ID

CN Statement

CN1 The legacy hardware, especially the display, is rapidly becoming
unsupportable, the hardware is not being produced anymore and not much
spares left.

CN2 More test point monitoring and trending is desired but the existing processor,
memory, and storage capacity of the controller and the recorder is not enough.

CN3 The aged hardware is not reliable anymore; it breaks often.

CN4 The tapes used to record data became unreliable and expensive to replace.

CN5 Ground systems are newer than the onboard system and have more capacity to
do more analysis but the onboard system cannot provide enough data.

CN6 The display is fixed and not visible from different angles. The flight engineers
want to see the display and other instrumentations at the same time.

CN7 The hardware should withstand the environmental condition exist in the aircraft

CN8 The hardware should comply with the Air Force regulations, and standards for
on-aircraft hardware

CN9 The format of the recorded data should not be changed since the ground
systems are processing and analyzing the flight data recorded and we do not
want to impact the ground systems.

4.2.1 Initial FRs, ICs, and DPs

After the CNs are gathered and analyzed, the CNs are mapped to initial functional

requirements (FRis) and input constraints (ICs).

The FRs mapped from the CNs may not be the top level FRs, they could be

children of a higher level requirement that is derived from another CN or the parent FR

may not exist yet. For example, FRi5 (Use a more reliable and affordable medium for

data recording) is a child requirement of FRi3 (Provide a supportable and reliable data

recording capability) since the medium for data recording is a part of the recording

capability. Therefore, the FRs initially generated from the CNs are suffixed by “i” for

“initial” in order to indicate that they do not represent the FR/DP hierarchy yet.

140

Table 4.2 – FRis and ICs mapped from the CNs

CN ID FRi
ID

FRi Description
1 2 3 4 5 6 7 8 9

FRi1 Provide a supportable and reliable
display capability X 0 X 0 0 X 0 0 0

FRi2 Provide a supportable and reliable
controller capability X 0 X 0 0 0 0 0 0

FRi3 Provide a supportable and reliable
data acquisition and recording
capability

X 0 X 0 0 0 0 0 0

FRi4 Provide a supportable and reliable
print capability X 0 X 0 0 0 0 0 0

FRi5 Use a more reliable and affordable
medium for data recording X 0 X X X 0 0 0 0

FRi6 Increase the processing, memory, and
storage capacity of the system 0 X 0 0 X 0 0 0 0

FRi7 Allow the user to rotate the display
unit for better visibility 0 0 0 0 0 X 0 0 0

IC ID IC Description
IC1 All new and modified hardware

should comply with the applicable Air
Force regulations and standards for
onboard systems for C-5 aircraft

0 0 0 0 0 0 X X 0

IC2 The data recording format should stay
the same. 0 0 0 0 0 0 0 0 X

Now, let’s explain the mapping of the CNs into initial FRs and ICs. Index i

indicates the CNs, j indicates the FRis, and k indicates the ICs.

After CNs are mapped to the initial FRis and ICs, the FRis should be analyzed to

develop the system FR, DP, and SC that states the system objective, the proposed system

design, and the proposed system. Once the system FR/DP/SC triplet is developed, the

decomposition and zigzagging process starts. The initial FRis should later be integrated

into the FR/DP hierarchy where appropriate.

141

Table 4.3 – CN to FRi and IC Mapping Explanation

Ri-j/Ci-k CN to FRi and IC Mapping Explanation
R1-1, 1-2,

1-3, 1-4, 1-

5

FRi1 through 5 replace the almost unsupportable legacy hardware with readily
available COTS hardware.

R2-6 FRi6 is created to state the need in the functional domain.
R3-1, 3-2,

3-3, 3-4, 3-

5

FRi1 through 5 replace the unreliable legacy hardware with reliable COTS
hardware.

R4-5 FRi5 states the need in the functional domain.
R5-5, 5-6 FRi5 will provide the required reliable data recording medium and FRi6 will

provide the required additional processing, memory, and storage capacity to
perform more flight data analysis and recording.

R6-7 FRi7 will provide the ergonomic flexibility needed by the flight engineers.
C7-1, 8-1 IC1 will make sure that CN 7 and 8 will be satisfied.
C9-2 IC2 make sure that CN 9 will be satisfied.

4.2.2 Decomposition and Zigzagging

4.2.2.1 Decomposition and Zigzagging: 1st and 2nd Level

The system FR can be developed from the analysis of the initial functional

requirements (FRis) and the Input Constraints (ICs) as:

The system shall be more supportable and reliable than the legacy system and

provide increased data processing, memory, and data storage capacity.

And the system DP proposed to achieve the system FR is:

Upgrade the legacy system with new hardware and software to increase its

supportability and reliability as well as to increase data processing, memory, and

data storage capacity.

And the system proposed to provide the system DP is:

Ruggedized COTS hardware and printer with COTS and custom software

applications.

Developing the system FR/DP/SC triplet helps ensure that a true top-down

approach is used to analyze the requirements. This triplet also serves as a means to

establish scope for the system and the project.

142

We can use the proposed FR template to document the details of the system FR as

shown in Table 4.4. Each FR should be described and document using the FR template.

Table 4.4 - FR1 Description

Attribute Description
Unique identifier FR 1
Category Functional Requirement
Title Improve the onboard system
Description The system shall be more supportable and reliable than the

legacy system and provide increased data processing, memory,
and data storage capacity

Rational CN 1 – 10
Original Source Aircraft maintenance program office
Priority 1
Degree of Necessity Essential
Effort 24 months
Skills Hardware, programming, network, database, communication,

etc.
Status New
Responsible party Program Manager
Date of creation Jan 2005, 30
Parent requirement NA
Risks At his point, the requirement is very generic and involves both

technical and schedule risks.
Verification method Not verifiable by itself.

Once the parent FR and DP as well as the allocated ICs to the parent DP are

given, the functions that the DP has to perform in order to achieve the parent FR and

satisfy the allocated ICs are determined and they are listed as the children FRs. The

decomposition and zigzagging continues by finding or developing DPs for the newly

established FRs.

At the first level of decomposition, two new FRs (1.5 and 1.6) are introduced.

Although these new FRs were not mentioned in the CNs or in the initial FRs, starting the

decomposition from the system FR-DP pair allows us to uncover and determine the

missing or implied FRs. Five of the seven initial FRis are at Level 1, but the remaining

initial FRs (FRi 5 and 7) are at lower levels of decomposition.

143

Table 4.5 – FR-DP Decomposition: Level 1 and 2

ID FR DP DP
Type

1 The system shall be more
supportable and reliable than the
legacy system and provide
increased data processing,
memory, and data storage
capacity

Modernize the legacy system to
increase its supportability and
reliability as well as to increase
data processing, memory, and data
storage capacity

I

1.1
(FRi1)

Provide a supportable and reliable
display capability

Modernize the display capability III

1.2
(FRi2,
FRi6)

Provide a supportable and reliable
controller capability with
increased processing, memory,
and storage capacity

Modernize the controller capability III

1.3
(FRi3,
FRi6)

Provide a supportable and reliable
data acquisition and recording
capability with increased storage
capacity

Modernize the data acquisition and
recording capability

II

1.4
(FRi4)

Provide a supportable and reliable
print capability

Modernize the printing capability III

1.5 Install the new hardware Mounts and fixtures for securing
the new hardware.

III

1.6 Provide power for the hardware Uninterrupted Power Supply
(UPS) and a Voltage Converter for
converting aircraft power

II

Now, we need to develop the design matrix for this level to determine if the

proposed design is an acceptable one based on the independence axiom. The design

equation can be written as:

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

6.1
5.1
4.1
3.1
2.1
1.1

0

00000
00000
00000
00000

6.1
5.1
4.1
3.1
2.1
1.1

DP
DP
DP
DP
DP
DP

XXXXX
XXXXXX

X
X

X
X

FR
FR
FR
FR
FR
FR

 (4.1)

144

The design equation in the current format indicates a coupled design. However,

we can switch the 5th and 6th rows and the 5th and 6th columns to make the design

decoupled, an acceptable design as shown in Equation 4.1. In a decoupled design, the

order of designing the DPs is very important. What the above design equation really

means is that the first 4 DPs are independent but the last 2 DPs have to be designed after

the first four are completed, and DP1.5 is the DP that has to be designed at the end since

it is affected by all the other DPs. The design equation can be rewritten as:

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

5.1
6.1
4.1
3.1
2.1
1.1

0
00000
00000
00000
00000

5.1
6.1
4.1
3.1
2.1
1.1

DP
DP
DP
DP
DP
DP

XXXXXX
XXXXX

X
X

X
X

FR
FR
FR
FR
FR
FR

 (4.2)

The reasoning for the non-zero elements of the design matrix as well as any

assumptions or conditions for both zero and non-zero elements are given in the Design

Matrix Element Explanations table below.

Table 4.6 – Design Matrix Element Explanations

Di-j Explanation
D1.6.-1.1,

1.6-1.2, 1.6-

1.3, 1.6-1.4

The first 4 DPs need power supply; if any one of them changes the power
supply requirement may change too.

D1.5-1.1,

1.5-1.2, 1.5-

1.3, 1.5-1.4,

1.5-1.6

The first 5 DPs need to be installed; if any one of them changes the installation
requirement may change too.

Since this is the first layer of decomposition, the master design equation in this

case is the same as the 2nd level design equation.

All of the ICs are first allocated to the main DP, and they should be properly

allocated to the children DPs. This allocation may affect the next level decomposition

because in order to satisfy the allocated ICs, we may have to introduce a new FR in the

next level.

145

First of all, IC1 is very vague and we need to understand what it really means to

be able to allocate this IC. The airborne equipments, such as the one that we are re-

designing, should comply with the RTCA/DO-160D standard. The RTCA/DO-160D

standard defines a series of minimum standard environmental test conditions and

applicable test procedures for airborne equipment. The purpose of these tests is to

determine the performance characteristics of airborne equipment in environmental

conditions representative of those which may be encountered in airborne operation of the

equipment.

The RTCA/DO-160D is published by RTCA, Inc., a global organization

comprised of industry and government representatives, develops standards to assure the

safety and reliability of all Airborne Electronics (Avionics). Manufacturers of aircraft

electronic equipment selling their products in the United States, Europe, and around the

globe must meet RTCA requirements, including RTCA/DO-160D.

The conditions applicable to our proposed solution (DP1.1 to DP1.6) are:

• IC1.1: The system shall meet or exceed the temperature and altitude

requirements of RTCA/DO-160D, Section 4, Category A4 equipment for

the operating temperature range 0°C to +50°C, and the non-operating

temperature range -40°C to +70°C.

• IC1.2: The system shall meet or exceed the temperature variation

requirements of RTCA/DO-160D, Section 5, Category C equipment for

the operating temperature range 0°C to +50°C, and the none-operating

temperature range -40°C to +70°C.

• IC1.3: The system shall meet or exceed the humidity requirements of

RTCA/DO-160D, Section 6, for Category A equipment.

• IC1.4: The system shall meet or exceed the operational shock

requirements of RTCA/DO-160D, Section 7, for Category A equipment.

o The operational shock test verifies that the equipment will continue

to function within performance standards after exposure to shocks

experienced during normal aircraft operations. These shocks may

146

occur during taxiing, landing, or when aircraft encounters sudden

gusts in flight. This requirement applies to all equipment installed

on fixed-wing aircraft and helicopters [RTCA, 97].

• IC1.5: The system shall meet or exceed the vibration requirements of

RTCA/DO-160D, Section 8, for Category S equipment.

o The vibration tests demonstrate that the equipment complies with

the applicable equipment performance standards when subject to

vibration levels specified for the appropriate category. This

requirement applies to equipment installed on a fixed-wing,

turbojet, turbofan, and propfan aircraft and helicopters [RTCA,

97].

• IC1.6: All system shall meet or exceed the sand and dust requirements of

RTCA/DO-160D, Section 12, for Category D equipment.

• IC1.7: The system shall meet or exceed the power input requirements of

RTCA/DO-160D, Section 16, for Category E equipment.

• IC1.8: The system shall meet or exceed the voltage spike requirements of

RTCA/DO-160D, Section 17, for Category B equipment.

• IC1.9: The system shall meet or exceed the audio frequency conducted

susceptibility requirements of RTCA/DO-160D, Section 18, for Category

E equipment.

• IC1.10: The system shall meet or exceed the induced signal susceptibility

requirements of RTCA/DO-160D, Section 19, for Category B equipment.

• IC1.11: The system shall meet or exceed the radio frequency requirements

of RTCA/DO-160D, Section 20, for Category S equipment.

• IC1.12: The system shall meet or exceed the Electrostatic Discharge

(ESD) requirements of RTCA/DO-160D, Section 25, for Category A

equipment.

• IC1.13: All hardware shall meet or exceed the crash safety shock

requirements of RTCA/DO-160D, Section 7, Category C equipment using

147

the crash loading factors referenced in JSSG-2006, Appendix A, Section

A.3.4.2.11 for fixed and removable equipment.

o The crash safety test verifies that certain equipment will not detach

from its mountings or separate in a manner that presents a hazard

during emergency landing. It applies to equipment installed in

compartments and other areas of the aircraft where equipment

detached during emergency landing could present a hazard to

occupants, fuel system or emergency evacuation equipment

[RTCA, 97].

Now, we can develop the IC allocation table as shown below.

Table 4.7 – DP-IC Allocations for 2nd Level DPs

DP\IC 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10 1.11 1.12 1.13 2
1.1 X X X X X X X X X X X X X 0
1.2 X X X X X X X X X X X X X 0
1.3 X X X X X X X X X X X X X X
1.4 X X X X X X X X X X X X X 0
1.5 0 0 0 X X 0 0 0 0 0 0 0 X 0
1.6 X X X X X X X X X X X X X 0

For the sake of keeping the example simply, only the allocation values related to

DP 1.5 is explained in Table 4.8 since this DP will be decomposed further to the leaf

level.

Table 4.8 – DP-IC Allocation Descriptions

CAi-j Allocation Explanation
CA1.4 – 1.5 Since the mounts and fixtures will secure the hardware to the aircraft, this

assembly should meet or exceed the operational shock requirements.
CA1.5 – 1.5 Since the mounts and fixtures will secure the hardware to the aircraft, this

assembly should meet or exceed the vibration requirements.
CA1.13 – 1.5 Since the mounts and fixtures will secure the hardware to the aircraft, this

assembly should meet or exceed the crash requirements.
CA1.1, 2, 3, 6,

7, 8, 9, 10, 11, 12,

13 – 1.5

The mounts and fixtures are insensitive to the other environmental
conditions.

148

After the FR-DP decomposition is complete for this level and the related ICs are

allocated to the DPs, the SCs and PVs should be developed for the new DPs. This

analysis helps develop the system physical architecture and also helps determine if the

DPs are producible.

Table 4.9 – DP-SC-PV Mapping: Level 1 and 2

DP
ID

DP
Type

SC/PV
ID

SC Name PV Title

1 I 1 Ruggedized COTS
hardware and printer
with COTS and custom
software applications

Assembly and installation processes for the
system.

1.1 III 1.1 COTS Ruggedized
Laptop Computer

Purchase order

1.2 III 1.1 COTS Ruggedized
Laptop Computer

Purchase order

1.3 II NA
1.4 III 1.2 COTS Ruggedized

Printer
Purchase order

1.5 II 1.4 Mounts and Fixtures Manufacturing and assembly processes
1.6 II NA

The DP-SC mapping shows that there are 2 system components that can be

identified for the 3 DPs that are of Type III. The DP-SC mapping as shown in above table

is not one-to-one. SC 1.1 Laptop provides the solution stated in DP 1.1 and 1.2. The DPs

that are of Type II (DP 1.3 and 1.6) do not have corresponding SCs yet.

However, from the existing design we know that the laptop (SC 1.1) and a highly

ruggedized hardware that has real-time data acquisition capability, which is called

“Communication Controller (CC)” (DP 1.3), are used for DP 1.3. Also, a ruggedized UPS

(SC 1.5) and a ruggedized voltage converter (SC 1.6) are used for DP 1.6. And finally all

the mounts and fixtures are grouped under “Mounts and Fixtures” subsystem (SC 1.4).

The DP-SC mapping table below presents the relationship between the DPs and SCs at

the current level.

149

Table 4.10 – DP-SC Mapping

DP\SS 1.1 1.2 1.3 1.4 1.5 1.6
1.1 X 0 0 0 0 0
1.2 X 0 0 0 0 0
1.3 X 0 X 0 0 0
1.4 0 X 0 0 0 0
1.5 0 0 0 X 0 0
1.6 0 0 0 0 X X

The laptop computer, printer, UPS, and the voltage converter are considered as

“component”, since they are commercially available products. The next levels of

decomposition will determine their attributes in order to create a purchase order to

procure the components.

The communication controller and the mounts and fixtures were identified as

“Subsystem”, since we believe that they are not commercially available and we need to

continue the decomposition to a level where the SCs can be either purchased or produced.

The PVs developed for the identified SCs are very high level since we don’t have

enough information at this point to put more details. However, they provide guidance and

also help incorporate manufacturing (or implementation, coding, execution) concerns

during the design process.

We have identified the 2nd level FRs and proposed DPs that satisfy the FRs. We

also identified possible system components that can be used to provide the design

solutions expressed as DPs and identified the PVs that will be used to produce the SCs.

Since the design equation for this level indicates an acceptable design (decoupled), we

can continue with the decomposition.

4.2.2.2 Decomposition and Zigzagging: 3rd Level

The FR-DP 1.5 pair should be the last pair to decompose since it depends on the

other DPs based on the design equation. However, we take this pair to decompose to the

detailed levels since this branch may involve producing a solution that is not

150

commercially available and we may end up manufacturing and testing the final product

instead of just procuring a COTS solution.

Since we are redesigning the system using the proposed product development

lifecycle model, we assumed that the rest of the system is pretty much remained the same

so that we can decompose the FR-DP 1.5 pair. From the previous level DP-SC mapping,

we can determine that there are five components of the system that we have to consider

for this FR-DP pair: Laptop Computer, Communication Controller, Printer, UPS, and

Voltage Converter.

Table 4.11 – FR-DP Decomposition for FR-DP 1.5

ID FR DP DP
Type

1.5 Install the new hardware Mounts and fixtures for securing the
new hardware

II

1.5.1 Secure the laptop to the flight
engineers desk

Laptop mount III

1.5.2 Secure the printer Printer fixtures III
1.5.3 Secure the CC CC fixtures III
1.5.4 Secure the UPS UPS fixtures III
1.4.5 Secure the Voltage Converter Voltage Converter fixtures III

Since these five components are independent from each other and since there is

no space related constraints, the design matrix is an uncoupled one.

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

5.5.1
4.5.1
3.5.1
2.5.1
1.5.1

0000
0000
0000
0000
0000

5.5.1
4.5.1
3.5.1
2.5.1
1.5.1

DP
DP
DP
DP
DP

X
X

X
X

X

FR
FR
FR
FR
FR

 (4.3)

At this point, since the above design equation indicates an acceptable design (an

uncoupled design), we can develop the master design equation to determine if the overall

design at this level (Level 3) is still an acceptable one. The master design equation uses

the lowest level FR-DP pairs as shown in Equation 4.4.

151

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

5.5.1
4.5.1
3.5.1
2.5.1
1.5.1

6.1
4.1
3.1
2.1
1.1

00000000
00000000
00000000
00000000
000000
00000
000000000
000000000
000000000
000000000

5.5.1
4.5.1
3.5.1
2.5.1
1.5.1

6.1
4.1
3.1
2.1
1.1

DP
DP
DP
DP
DP
DP
DP
DP
DP
DP

XX
XX

XX
XX

XXXX
XXXXX

X
X

X
X

FR
FR
FR
FR
FR
FR
FR
FR
FR
FR

 (4.4)

The master design matrix indicates that the decoupled design is maintained. Here,

D1.5 – 1.5 is replaced by the design matrix that is generated from the decomposition of FR-

DP 1.5 pair. Also, the off-diagonal elements of the 2nd level design matrix are also

decomposed. For example, D1.5 – 1.1 is decomposed into D1.5.1 – 1.1, D1.5.2 – 1.1, D1.5.3 – 1.1,

D1.5.4 – 1.1, and D1.5.5 – 1.1. Now we know that DP1.1, the laptop screen, affects only

FR1.5.1, not the other children FRs of FR 1.5.

This specific knowledge helps analyze communication and coordination efforts

among the development team members as well as in change management. The person

who is responsible for developing the design solution for DP1.1 now knows that the

design for FR1.5.1 is affected by DP1.1 and the design for FR1.5.1 cannot be finalized

before DP1.1 is fully developed. Therefore, whenever DP1.1 is complete or whenever

there is a change to DP1.1, the designer for FR1.5.1 has to be informed and impact of the

change on FR1.5.1 has to be considered in the change impact analysis.

This type of communication and coordination is very critical during the

development and design phases as well as during maintenance in order to produce high

quality products and maintain the integrity of the product. It also helps shorten the

development time and reduce the cost by avoiding miscommunication and rework.

The reasoning for the non-zero elements of the master design matrix as well as

any assumptions or conditions for both zero and non-zero elements are given in table

below.

152

Table 4.12 – Level 3 Master Design Matrix Element Explanations

Di-j Explanation
D1.5.1-1.1,

1.5.1-1.2,

1.5.1-1.3

The DPs 1.1, 1.2, and 1.3 affect the specifications of the laptop computer.

D1.5.2-1.4 DP 1.4 determines the specifications of the printer and in turn affects the
design for FR 1.5.2 (DP 1.5.2).

D1.5.3-1.3 DP 1.3 determines the specifications of the communication controller and
in turn affects the design for FR 1.5.3 (DP 1.5.3).

D1.5.4-1.6 DP 1.6 determines the specifications of the UPS and in turn affects the
design for FR 1.5.4 (DP 1.5.4).

D1.5.5-1.6 DP 1.6 determines the specifications of the voltage converter and in turn
affects the design for FR 1.5.5 (DP 1.5.5).

The next step in the development lifecycle is to look at the ICs that are allocated

to the parent DP and decompose or allocate them to the newly created DPs. As shown in

Table 4.13, all of the ICs that are allocated to FR-DP 1.5 are allocated to each and every

sub DP since each DP has to comply with the allocated ICs. Table 4.14 has the

explanation of the IC allocation.

Table 4.13 – DP-IC Allocation for 2nd Level DPs

DP\IC 1.4 1.5 1.13
1.5.1 X X X
1.5.2 X X X
1.5.3 X X X
1.5.4 X X X
1.5.5 X X X

Table 4.14 – DP-IC Allocation Descriptions

CAi-j Allocation Explanation
CA1.4 – 1.5.1,

1.4 – 1.5.2, 1.4 – 1.5.3,

1.4 – 1.5.4, 1.4 – 1.5.5

All mounts and fixtures should meet or exceed the operational
shocks requirements.

CA1.5 – 1.5.1,

1.5 – 1.5.2, 1.5 – 1.5.3,

1.5– 1.5.4, 1.5 – 1.5.5

All mounts and fixtures should meet or exceed the vibration
requirements.

CA1.13 – 1.5.1,

1.13 – 1.5.2, 1.13 – 1.5.3,

1.13 – 1.5.4, 1.13 – 1.5.5

All mounts and fixtures should meet or exceed the crash
requirements.

153

Again, after the FR-DP decomposition is complete for this level and the related

ICs are allocated to the DPs, the SCs and PVs should be developed for the new DPs. As

shown in Table 4.15, the SCs for the new DPs are all Type II since they are not either

commercially available or not a single component yet. Notice that the SC IDs are

different than the DP IDs since the DP hierarchy represents the solution decomposition

whereas the SC hierarchy represents the physical decomposition.

Table 4.15 – DP-SC-PV Mapping: Level 1 and 2

DP
ID

DP
Type

SC/PV
ID

SC Name PV Title

1.5 II 1.4 Mounts and fixtures Manufacturing and assembly processes

1.5.1 III 1.4.1 Laptop mount Manufacturing and assembly processes
1.5.2 III 1.4.2 Printer fixtures Manufacturing and assembly processes
1.5.3 III 1.4.3 CC fixtures Manufacturing and assembly processes
1.5.4 III 1.4.4 UPS fixtures Manufacturing and assembly processes
1.5.5 III 1.4.5 Voltage converter

fixtures
Manufacturing and assembly processes

The PVs developed for the identified SCs are very high level since we don’t have

enough information at this point in order to provide enough PV details. However, these

PVs provide guidance and also help consider manufacturing (or implementation, coding,

execution) concerns during the design process.

As shown in DP-SC mapping table below, there is on system component

identified for each DP.

Table 4.16 – DP-SC Mapping for DP 1.5 and SC 1.4

DP\SS 1.4.1 1.4.2 1.4.3 1.4.4 1.4.5
1.5.1 X 0 0 0 0
1.5.2 0 X 0 0 0
1.5.3 0 0 X 0 0
1.5.4 0 0 0 X 0
1.5.5 0 0 0 0 X

154

We have identified the 3rd level FRs and proposed DPs that satisfy the FRs for

FR-DP 1.5. We also identified possible system components that can be used to provide

the design solutions expressed as DPs and identified the PVs that will be used to produce

the SCs. Since the design equation for this level and the master design equation indicate

an acceptable design (a decoupled design), we can continue with the decomposition.

4.2.2.3 Decomposition and Zigzagging: 4th Level

Let us continue the decomposition and zigzagging by decomposing the FR/DP

1.5.1 pair. Since the design equation for Level 3 of FR-DP 1.5 indicates an uncoupled

design, we can decompose FR-DP 1.5.1 independent of the other FR-DP pairs. However,

as indicated by the master design equation of Level 3, FR1.5.1 is satisfied by DP1.1,

DP1.2, and DP1.3 as well as DP1.5.1. Therefore, DP1.5.1 cannot be decomposed before

DP1.1, 1.2 and 1.3 are fully developed. However, for this example, we assume that these

DPs are very similar to the DPs of the current design and continue with decomposition of

FR-DP 1.5.1 pair.

Table 4.17 – FR-DP Decomposition for FR-DP 1.5.1

ID FR DP DP
Type

1.5.1 Secure the laptop to the flight
engineers desk

Laptop mount III

1.5.1.1
(FRi7)

Allow user to rotate and secure
the laptop.

Mount the laptop to the desk with a
joint that allows the laptop to rotate
and a locking mechanism to fix the
laptop at the rotated location.

III

1.5.1.2 Allow user to secure the laptop
screen when it is opened

Laptop screen locking mechanism. III

FR 1.5.1.1 covers FRi7. Also, FR1.5.1.2 is introduced so that the laptop screen

will not collapse (close) under shock, vibration, and crash conditions during operation (IC

1.4, 1.5, and 1.14).

The FR-DP 1.5.1 pair is decomposed into two FR-DP pairs and the new FRs seem

independent. Therefore, the design equation is an uncoupled one.

155

⎭
⎬
⎫

⎩
⎨
⎧
⎥
⎦

⎤
⎢
⎣

⎡
=

⎭
⎬
⎫

⎩
⎨
⎧

2.1.5.1
1.1.5.1

0
0

2.1.5.1
1.1.5.1

DP
DP

X
X

FR
FR

 (4.5)

At this point, since the above design equation indicates an acceptable design (a

decoupled design), we can proceed to develop the master design equation to determine if

the overall design at this level (Level 4) is still acceptable.

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

5.5.1
4.5.1
3.5.1
2.5.1

2.1.5.1
1.1.5.1

6.1
4.1
3.1
2.1
1.1

000000000
000000000
000000000
000000000
0
0

0
0

0
0

0
0

0
0

0
0

0
0

00

000000
0000000000
0000000000
0000000000
0000000000

5.5.1
4.5.1
3.5.1
2.5.1

2.1.5.1
1.1.5.1

6.1
4.1
3.1
2.1
1.1

DP
DP
DP
DP
DP
DP
DP
DP
DP
DP
DP

XX
XX

XX
XX

X
XXX

X
X

XXXXX
X

X
X

X

FR
FR
FR
FR
FR
FR
FR
FR
FR
FR
FR

 (4.6)

The master design matrix indicates that the decoupled design is still maintained.

Here the design matrix that was generated from the decomposition of FR-DP 1.5.1 pair

replaces design matrix element, D1.5.1 – 1.5.1. Also, the off-diagonal elements of the 3rd

level design matrix are also decomposed. For example, D1.5.1 – 1.1 is decomposed into

D1.5.1.1 – 1.1 and D1.5.1.2 – 1.1. Now we know that DP1.1, modernize the display capability,

affects both FR1.5.1.1and FR 1.5.1.2 since the mount designs depend on the attributes of

the screen such as screen size and weight.

The reasoning for the non-zero elements of the master design matrix as well as

any assumptions or conditions for both zero and non-zero elements are given in table

below. Only the new values are explained here.

156

Table 4.18 – Level 4 Master Design Matrix Element Explanations

Di-j Explanation
D1.5.1.1-1.1,

1.5.1.1-1.2,

1.5.1.1-1.3

The DPs 1.1, 1.2, and 1.3 affect the specifications of the laptop
computer.

D1.5.1.2-1.1,

1.5.1.2-1.2,

1.5.1.2-1.3

The DPs 1.1, 1.2, and 1.3 affect the specifications of the laptop screen.

The next step is to look at the ICs that are allocated to the parent DP and to

decompose or allocate them to the newly created DPs. As shown in Table 4.19, all of the

ICs that are allocated to FR-DP 1.5.1 are allocated to each and every sub DP since each

DP has to comply with the allocated ICs except for IC1.5. IC 1.5 is not allocated to

DP1.5.1.2 because DP1.5.1.2 is assumed to be a rigid structure for vibration test purposes

and DP1.5.1.1 is assumed to act as the vibration absorber to protect the laptop from

vibration effects.

 Table 4.19 – DP-IC Allocation for 2nd Level DPs

DP\IC 1.4 1.5 1.13
1.5.1.1 X X X
1.5.1.2 X 0 X

Although, reasoning behind all the allocation values should be explained, only the

most important one is explained in the allocation description table since this one reflects a

design decision and it acts as a system constraint.

 Table 4.20 – DP-IC Allocation Descriptions

CAi-j Allocation Explanation
CA1.5 – 1.5.1.2 DP1.5.1.2 is assumed to be a rigid structure for vibration test purposes

and DP1.5.1.1 is assumed to act as the vibration absorber to protect the
laptop from vibration effects.

Now, the SCs and PVs should be developed for the new DPs and the mapping

between the DPs and SCs should be presented as presented below.

157

Table 4.21 – DP-SC-PV Mapping for FR-DP 1.5.1

DP ID DP
Type

SC/PV
ID

SC Name PV Title

1.5.1 III 1.4.1 Laptop mount Manufacturing and assembly
processes

1.5.1.1 III 1.4.1.1 Laptop base mount Manufacturing and assembly
processes

1.5.1.2 III 1.4.1.2 Laptop screen locking
mechanism

Manufacturing and assembly
processes

Table 4.22 – DP-SC Mapping for DP 1.5 and SC 1.4

DP\SS 1.4.1 1.4.2
1.5.1.1 X 0
1.5.1.2 0 X

Still, the SCs are at the subsystem level and enough detail is not known to fully

develop the PVs. Since the master design equation indicates an acceptable design and leaf

level has not been reached, the decomposition process continues.

4.2.2.4 Decomposition and Zigzagging: 5th Level

The FR-DP 1.5.1.2 is decomposed further to reach the leaf level of decomposition

and zigzagging by first introducing the new FRs and then DPs.

Three sub-FRs are derived from the parent FR-DP pair to properly describe the

functional requirements of the laptop screen locking mechanism. The last two FRs

(1.5.1.2.2 and 1.5.1.2.3) are introduced to take into account the ICs that are allocated to

this DP; IC1.4 and 1.13, since these two ICs are of type performance constraints. The

DPs that are proposed to satisfy the newly derived FRs are of different types; one is Type

II, Conceptual, and two are Type V, Attributes. DP1.5.1.2.2 does not correspond to a

single subsystem or a component; it is a design decision that states that the screen should

be supported from both sides. Similar to the cola can example in Suh (2001, pg. 17), the

158

DPs here do not correspond one-to-one to the components of the screen locking

mechanism.

Table 4.23 – FR-DP-PV Decomposition for FR 1.5.1.1

ID FR DP DP
Type

1.5.1.2 Allow user to secure the laptop
screen when it is opened

Laptop screen locking mechanism. III

1.5.1.2.1 Secure screen when it is opened
between θ1 and θ2 degrees

Length and attachment points of the
locking mechanism

V

1.5.1.2.2 Screen should not be twisted
under shock and crash
conditions

Support from both sides of the
laptop screen

II

1.5.1.2.3 Screen should not be closed
under shock and crash
conditions

The strength of locking mechanism
when it is locked

V

The parent DP is Type III, Subsystem and some of the children DPs are Type 5,

Attribute, but we still do not know the components that made up the screen locking

mechanism so that we can present a complete physical hierarchy. We will identify the

components later.

Now, let us look at the new FRs and DPs and determine if the proposed design at

this level is an acceptable one before proceeding to the next step of physical component

identification.

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

3.2.1.5.1
2.2.1.5.1
1.2.1.5.1

00
00
00

3.2.1.5.1
2.2.1.5.1
1.2.1.5.1

DP
DP
DP

X
X

X

FR
FR
FR

 (4.7)

The design matrix for FR-DP 1.5.1.2 pair indicates an uncoupled design since the

DPs only affect their corresponding FRs. Although the components that provide the

design solutions can be the same, the functional requirements can be satisfied

independent from each other. This is a good example of the distinction between the DPs

and the SCs and functional independence verses physical independence.

Now, we can look at the master design matrix to evaluate the overall design.

159

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

5.5.1
4.5.1
3.5.1
2.5.1

3.2.1.5.1
2.2.1.5.1
1.2.1.5.1

1.1.5.1
6.1
4.1
3.1
2.1
1.1

00000000000
00000000000
00000000000
00000000000
00000000000
00000000000
00000000000
000000000
00000000
000000000000
000000000000
000000000000
000000000000

5.5.1
4.5.1
3.5.1
2.5.1

3.2.1.5.1
2.2.1.5.1
1.2.1.5.1

1.1.5.1
6.1
4.1
3.1
2.1
1.1

DP
DP
DP
DP

DP
DP
DP
DP

DP
DP
DP
DP
DP

XX
XX

XX
XX

XX
XX

XX
XXXX

XXXXX
X

X
X

X

FR
FR
FR
FR

FR
FR
FR
FR

FR
FR
FR
FR
FR

(4.8)

The master design matrix indicates that the decoupled design is still maintained.

The design matrix that was generated for the decomposition of FR-DP 1.5.1.2 pair

replaced the design matrix element, D1.5.1.2 – 1.5.1.2.

The reasoning for the non-zero elements of the master design matrix as well as

any assumptions or conditions for both zero and non-zero elements are given in Table

4.24. Only the new values are explained here.

Table 4.24 – Level 4 Master Design Matrix Element Explanations

Di-j Explanation
D1.5.1.2.1-1.1,

 1.5.1.2.2-1.1,

 1.5.1.2.3-1.1

The DPs 1.1 (Modernize the display capability) affects the specifications of
the laptop screen, thus affecting the design solutions for FR 1.5.1.2.1,
1.5.1.2.2 and 1.5.1.2.3.

The next step is to look at the ICs that are allocated to the parent DP and

decompose or allocate them to the newly created DPs. As shown in Table 4.25, both of

the ICs that were allocated to FR-DP 1.5.1.2 are allocated the sub-DPs 1.5.1.2.2 and

1.5.1.2.3 since these FRs were introduced to take care of the allocated ICs. The

DP1.5.1.2.1 does not have anything to do with the allocated ICs.

160

Table 4.25 – DP-IC Allocation for 2nd Level DPs

DP\IC 1.4 1.13
1.5.1.2.1 0 0
1.5.1.2.2 X X
1.5.1.2.3 X X

The reasoning behind the allocation values are explained below.

Table 4.26 – DP-IC Allocation Descriptions

CAi-j Allocation Explanation
CA1.4 – 1.5.1.2.2,

1.4 – 1.5.1.2.3,

1.13 – 1.5.1.2.2,

1.13 – 1.5.1.2.3

IC 1.4 and 1.14 will be taken care of by the DP 1.5.1.2.2 and 1.5.1.2.3.

CA1.4 – 1.5.1.2.1,

1.14 – 1.5.1.2.1
DP 1.5.1.2.1 is about the dimension and attachment points of the
mechanism. Although the components are subject to the input
constraints, the attributes that will be defined for this DP are not related
to the allocated ICs.

The next step is to identify the system components that will provide the design

solutions stated by the new DPs and also the process variables that will be used to

produce the system components.

The first design alternative is a two-link mechanism. One link is attached to the

laptop base and the other attached to the screen. Two links are connected by a connector

and a screw. The links unfold like scissors when the screen is opened up and are

tightened by the screw at the desired angle. There is two of this mechanism on both sides

of the screen.

161

Figure 4.1 – Screen Locking Mechanism: Alternative 1

The first design alternative for screen locking mechanism consists of:

1. Two links: one attached to the laptop base, and the other attached to the

screen,

2. One base and one screen attachment plates,

3. Two screws to connect the links to the plates,

4. A connector that connects the links,

5. A tightening screw that connects the links and the connector, and tightens

the connector to secure the screen in place,

6. Some screws to attach the plates.

The second design alternative consists of one link, one rod where the link and rod

is connected by a connector that can slide on the rod. The link is attached to the laptop

base and the rod is attached to the screen. The sliding connector is placed on the slider

arm with a tightening screw. There is two of this mechanism on both sides of the screen.

162

Figure 4.2 – Screen Locking Mechanism: Alternative 2

Although both alternatives would work, the second alternative is chosen because

the joint where the locking happens in the second alternative has a wider contact area

(larger friction force) than the first design has. This provides better locking, thus,

increased probability of satisfying the FRs and ICs. Higher probability of success means

less information content, i.e. better design, based on the information axiom.

The screen locking mechanism consists of:

1. A rod attached to the screen plate,

2. A screen attachment plate that holds the rod,

3. A screw to connect the rod to the screen plate,

4. A link attached to the laptop base,

5. A base attachment plate that holds the link,

6. A screw to connect the link to the base plate

7. A sliding connector that connects the link and the rod,

8. A tightening screw that connects the link and the sliding connector and the

rod, and tightens the connector on the rod to secure the screen in place,

9. Some screws to attach the plates.

163

Now we can look at the DPs and identify the system components and attributes

that will provide the design solutions.

The components of the locking mechanism are also listed in the DP-SC-PV table

below to make sure that the table is comprehensive to cover the whole physical

architecture and the PVs for the components.

Table 4.27 – DP-SC-PV Mapping for FR-DP 1.5.1.2

DP ID DP
Type

SC/PV
ID

SC Name PV Title

1.5.1.2 III 1.4.1.2 Laptop screen locking
mechanism

Manufacturing and assembly
processes

NA 1.4.1.2.1 A rod attached to the
screen

Manufacturing process

NA 1.4.1.2.2 A screen attachment plate Manufacturing process
NA 1.4.1.2.3 A screw to connect the

rod to the screen plate
Purchase order

NA 1.4.1.2.4 A link attached to the
laptop base

Manufacturing process

NA 1.4.1.2.5 A base attachment plate Manufacturing process
NA 1.4.1.2.6 A screw to connect the

link to the base plate
Purchase order

NA 1.4.1.2.7 A sliding connector that
connects the two arms

Manufacturing process

NA 1.4.1.2.8 A tightening screw Manufacturing process
NA 1.4.1.2.9 Screws to attach the

plates
Purchase order

1.4.1.2.1.1 L1 (distance between

rod’s closest end and
laptop hinge)

A subsection of PV 1.4.1.2.1

1.4.1.2.1.2 L2 (rod length) A subsection of PV 1.4.1.2.1
1.4.1.2.4.1 L3 (distance between

link’s attachment point
and laptop hinge)

A subsection of PV 1.4.1.2.4

1.5.1.2.1 V

1.4.1.2.4.2 L4 (link length) A subsection of PV 1.4.1.2.4
1.5.1.2.2 II NA
1.5.1.2.3 V 1.4.1.2.7.1 A1 (Contact surface area

between connector and
rod)

A subsection of PV 1.4.1.2.7

164

DP ID DP
Type

SC/PV
ID

SC Name PV Title

1.4.1.2.7.2 SF1 (Surface finish of the
connector interior)

A subsection of PV 1.4.1.2.7

1.4.1.2.1.3 SF2 (Surface finish of the
rod surface)

A subsection of PV 1.4.1.2.1

1.4.1.2.8.1 F3 (Tightening screw
preload)

A subsection of PV 1.4.1.2.8

1.4.1.2.1.4 F1 (maximum load the
rod can carry)

A subsection of PV 1.4.1.2.1

1.4.1.2.4.3 F2 (maximum load the
link can carry)

A subsection of PV 1.4.1.2.4

Since two of the children DPs are of component attribute type (Type V), the

corresponding SCs are component attributes such as length, surface finish, etc. In this

mapping, there are attributes of different components that are mapped to a single DP.

The process variable for component attributes is a list of special conditions,

process parameters, or requirements for the PV developed for the component this

attributes belong to.

The components of the subsystem 1.4.1.2 are developed based on the children

DPs of DP 1.5.1.2. However, the components are mapped to the parent DP as shown

below since two of the children DPs are Type V and one of them is Type II.

Table 4.28 – DP-SC Mapping for DP 1.5.1.2 and SC 1.4.1.2 (1)

DP\SS

1.
4.

1.
2.

1

1.
4.

1.
2.

2

1.
4.

1.
2.

3

1.
4.

1.
2.

4

1.
4.

1.
2.

5

1.
4.

1.
2.

6

1.
4.

1.
2.

7

1.
4.

1.
2.

8

1.
4.

1.
2.

9

1.5.1.2 X X X X X X X X X

Now, we can map the component attributes back to the children DPs.

165

Table 4.29 – DP-SC Mapping for DP 1.5.1.2 and SC 1.4.1.2 (2)

DP\SS

1.
4.

1.
2.

1.
1

1.
4.

1.
2.

1.
2

1.
4.

1.
2.

1.
3

1.
4.

1.
2.

1.
4

1.
4.

1.
2.

4.
1

1.
4.

1.
2.

4.
2

1.
4.

1.
2.

4.
3

1.
4.

1.
2.

7.
1

1.
4.

1.
2.

7.
2

1.
4.

1.
2.

8.
1

1.5.1.2.1 X X 0 0 X X 0 0 0 0
1.5.1.2.2 0 0 0 0 0 0 0 0 0 0
1.5.1.2.1 0 0 X X 0 0 X X X X

Although the CTCs should be drafted for each subsystem and component during

the top-down decomposition and zigzagging process, only one CTC example is given

here to show how the CTC mapping table and CTC template are used.

We can develop component test cases (CTCs) for the components SC 1.4.1.2.1 -

1.4.1.2.9. The CTCs will be executed when the components are produced to make sure

that the component possesses all the attributes that are defined and satisfies the FRs and

the design ICs that are allocated to it.

We can also create CTCs for the subsystems such as the screen locking

mechanism to be run to prove that the subsystem (i.e., screen locking mechanism)

satisfies all the FRs and design ICs that are allocated to it.

The CTC mapping table is populated for only SC 1.4.1.2 as an example in Table

4.30. There are two test cases developed to test this component; one test case is to make

sure that the component possesses the attributes identified and the second test case is to

make sure that the component satisfies the allocated FRs and ICs.

Table 4.30 – CTS Mapping Table – Level 5

SC ID

CTC ID CTC Name

1.
4.

1.
2.

1

1.
4.

1.
2.

2

1.
4.

1.
2.

3

1.
4.

1.
2.

4

1.
4.

1.
2.

5

1.
4.

1.
2.

6

1.
4.

1.
2.

7

1.
4.

1.
2.

8

1.
4.

1.
2.

9

1.4.1.2.1.1 Screen locking
mechanism - Rod
inspection

X 0 0 0 0 0 0 0 0

1.4.1.2.1.2 Rod load test X 0 0 0 0 0 0 0 0

166

The CTC 1.4.1.2.1.1 is described using the CTC template proposed in Table 3.18.

The CTC description is not complete since the detail design has not been completed yet.

Table 4.31 – CTC 1.4.1.2.1.2

Attribute Description

Test Case ID 1.4.1.2.1.1

Name Screen locking mechanism - Rod inspection

Subsystem/Component
under test

1.4.1.2.1

FRs to test for 1.5.1.2.1 and 1.5.1.2.3

ICs to test for 1.4 and 1.13

Assumptions and
constraints

None

Prerequisite conditions None

Test inputs None

Test procedure 1) Measure and verify the length of the rod
2) Measure and verify the surface finish of the rod
3) …

4.2.2.5 Finishing Detail Design

We have developed some Type V DPs by decomposing one branch of the FR-DP

hierarchy. Each and every branch should be decomposed to Type V DPs, SCs, and PVs to

finish the detail product design so that the attributes of the components or the

commercially available subsystems are known for production (i.e., manufacturing,

coding, etc.) or procurement purposes.

4.2.3 Bottom-Up Completion

When the top-down decomposition and zigzagging process ends with an

acceptable design, the bottom-up completion process starts to complete the draft PVs for

components, subsystems, and the system. The draft CTCs for components and

subsystems are also finalized during this bottom-up completion process. And finally, the

167

FTCs are developed for the baselined FRs. The templates presented in Section 3.2.13

should be used for documenting the FTCs and the relationships between FTCs and the

baselined FRs.

4.3 System Architecture

The tree-diagram that shows the FR, DP, and SC hierarchies for the case study is

presented in Appendix B. The SC hierarchy presented in Appendix C highlights the

branch that was decomposed to Type 5 Attribute level and also shows the SC type levels.

Since APDL uses the same module-junction and the flow diagram format and

logic that are defined in the AD method, these two representations of the system are not

presented here.

4.4 Discussions and Conclusion

Some of the defects that could have been prevented if APDL had been used as the

model for product development:

• The laptop mount could have been designed and tested with the vibration

input constraint in mind. This defect caused several problems with the

laptop and the screen.

• The screen could have been supported from both sides so that the screen

did not twist under shock and crash conditions.

However, there are some difficulties of applying APDL, such as:

• Training is needed to teach the structure of APDL and how to perform the

mapping, decomposition and zigzagging properly.

• Software tools and databases are needed to enter and manipulate data, to

handle the mapping and decomposition matrices as well as to capture the

domain entity descriptions and matrix element explanations.

• Considerably more time would be spent on requirement analysis and

design when APDL is used than the traditional models. However, this

investment pays of during implementation and testing and also during the

rest of the product lifecycle due to easier implementation, full test

168

coverage, less reworks, easy maintenance, and higher customer

satisfaction.

The case study proved that using APDL model could have prevented some of the

defects and problems experienced before, and increased the possibility of producing high

quality products. In addition, the APDL model provides an easy to follow process for

performing product design and development activities.

169

CHAPTER V

V CONCLUSIONS AND

SUGGESTIONS FOR FUTURE WORK

5.1 Conclusions

In this research, different design methodologies and system/product development

lifecycle models are studied and a new product development lifecycle model, the

Axiomatic Product Development Lifecycle (APDL), is proposed and its use is discussed.

The AD method provides a robust structure and systematic thinking to support

design activities, however, it does not support the whole product development lifecycle.

The APDL model is based on the AD method to use the AD logic and scientific thinking

to capture, analyze, and manage the product development lifecycle knowledge. Since

APDL is based on the AD method, it inherits all the benefits of applying AD to product

development. Like the AD method, the APDL model can be used in design and

development of products, systems, services, and organizations in many different

disciplines.

The main differences between the AD method and the APDL model are:

1. APDL has the test domain with FTC and CTC characteristic vectors

2. APDL has the IC characteristic vector in the functional domain

3. APDL has mapping matrix from CNs to FRis and ICs.

4. APDL has IC allocation matrix for allocating ICs to DPs

5. APDL has the SC characteristic vector in the physical domain

6. APDL ties the PVs to the SCs instead of the DPs.

7. APDL has the SC hierarchy in the System Architecture (SA) representation

8. APDL has the tables to explain the mapping matrix elements and some

templates.

CONCLUSION AND

SUGGESTIONS FOR FUTURE WORK

170

9. Guiding the developer to first perform a top-down analysis to develop the

functional requirements, design solutions, and system components, and then a

bottom-up analysis to complete process variables and test cases.

The APDL model is also similar to the four-phase QFD model, where parts that

implement the design features are identified and then the processes that are used to create

the parts are developed.

The goal of using APDL is straightforward – to manage and track interactions

between elements of the customer, functional, deign, process and test domains. By doing

so, the system can be designed in a predictable way to satisfy the needs it is being created

to satisfy, and the system can be tested based on those needs. Every artifact of the product

development activities can be tied to the agreed-upon requirements or to individual

physical components. The structure of the APDL model provides the rigor in managing

design and product development lifecycle information that is required by large systems.

The APDL model provides an easy to follow process for performing product

design and development activities. The APDL model guides the transdisciplinary product

development team throughout the design and development effort; to first perform a top-

down analysis to develop the functional requirements, design solutions, and system

components, and then a bottom-up analysis to complete process variables and test cases.

The APDL model helps capture and present both the big-picture and detail view

of the product development knowledge, including design knowledge and requirement

traceability knowledge as well as relationships between all four PDL domains and all

eight characteristic arrays. This helps in managing the knowledge produced by the

development effort and also helps transdisciplinary teams communicate effectively and

participate efficiently. This also supports change impact analysis as well as re-

engineering and maintenance efforts.

The APDL, like AD method, forces careful consideration of functional

interactions, rather than relying on developer’s intuition and unstructured design

documentation. This is particularly beneficial to large or complex systems, where the

number of functional requirements makes it essentially impossible for single engineer,

171

even for a development team to manage and communicate the necessary amount of

functional, design, and process information.

The APDL model introduces the system component vector in the physical domain

along with the DPs and captures the mapping from DPs to SCs and from SCs to PVs

throughout the decomposition and zigzagging process. Unlike the traditional AD

approach, the APDL model relates the PVs to the SCs not to the DPs since the PVs are

used to produce the SCs that provide the design solutions expressed as DPs. For example,

a DP may state the minimum strength required from an element, but an attribute type SC

defines the material to be used. The PV will use the specified material (attribute type SC)

to produce the component (component type SC) in order to provide the design solution

stated in the DP. The APDL model captures the system component (SC) hierarchy and

traceability to be used as input for many physical component based analysis including

Design Structure Matrix (DSM), Failure Modes and Effect Analysis (FMEA), functional

reliability analysis [Trewn and Yang, 2000] and cost analysis [Jeziorek, 2005] as well as

change impact analysis.

Requirements traceability (RT) is generally practiced in software development

lifecycles and in manufacture of high-reliability products and systems such as medical

and aerospace. This important practice is not widely known and implemented in other

engineering disciplines. However, it should be a vital part of any system development

lifecycle to make sure that the customer needs, in turn functional requirements and

constraints are considered during the development phases and the final product/service

fully satisfies those needs.

The APDL model provides full requirement traceability in both directions in order

to make sure that all the activities in the product development lifecycle are aligned with

the requirements at all times and the final product satisfies the agreed-upon requirements.

This characteristic of APDL reduces the RT implementation problems. In addition to

requirement traceability, the APDL model provides input constraint (IC) traceability to

help allocate ICs to DPs systematically so that it can be made sure that the product

172

satisfies the ICs. It should be kept in mind that the matrices are living artifacts and they

should be kept up-to-date like other RT data throughout the lifecycle.

Seven new theorems have been developed. These theorems are the cornerstones

of the APDL model and have significant implications for the continued application of

axiomatic design. They streamline the process of applying axiomatic design to product

development, therefore increasing the likelihood that products will be designed to meet

their needs correctly. The theorems are listed in Appendix A.

The design axioms are applicable to the design equation only and the

independence axiom applies to process equation too. The other equations serve to

systematize the product development processes and product development knowledge

management by capturing the product development related knowledge, relations and

traceability.

Traditional design documentation is typically created at the end of the design

project, and often represents the final product and omits discussion of the reasoning

behind design decisions. The documentation created as a by-product of the APDL

process will overcome this problem and facilitate the communication and coordination

between the stakeholders including design teams. Better communication and coordination

result in producing high quality products and maintaining the integrity of the product. It

also helps shorten the development time and reduce the cost.

The tables and matrices used during the decomposition and zigzagging process do

not allow providing very detailed descriptions of the domain entities. However, the detail

descriptions of the domain entities should be provided in a format most suitable for the

discipline and the unique identifiers should be used to relate the documents to the

mapping matrices and tables. This will provide full integration of documentation as well

as traceability throughout the development lifecycle. The suggested domain entity

templates should be used as a starting point to develop the templates most suitable for the

development organization.

Commonly, systems are designed by teams of engineers, therefore requiring

communication both within and between teams. The APDL improves communication

173

between all the stakeholders by providing them a systematic way of accessing

development lifecycle knowledge both at the top level and at the detailed levels. Also, the

matrices, tables, and templates proposed in the APDL approach capture the knowledge

related to the domain entities and the relationships between the domain entities and help

plan and manage the interactions of different design and development activities during

the development lifecycle.

Traditionally, when a design or an analysis method to be used, the required input

data is gathered from product documents such as requirement specifications, design

descriptions and so on. Most of the time, these documents are not complete and most

importantly, they do not capture the relationships between domain entities. However, the

APDL model captures the product development knowledge and the relations between

different domain entities in a very structured way that the knowledge is very easy to

access for use by other design and development methodologies, such as TRIZ, robust

design, DSM, FMEA, etc.

The APDL model can be used in many project management models such as

waterfall, spiral, iterative-incremental, evolutionary prototype, etc. to manage the data

produced for each domain as well as the relationships between the domains.

In order to implement APDL, software tools and databases are needed to enter

and manipulate data, to handle the mapping and decomposition matrices as well as to

capture the domain entity descriptions and matrix element explanations.

5.2 Suggestions for Future Research

Software tools should be developed to support and to take full advantage of the

implementation of the APDL model. If the product development knowledge is not

captured in an electronic format, manipulation, sharing and reuse of the knowledge would

not be practical, especially for bigger projects.

Design and product development knowledge bases can be designed and developed

based on the APDL model. These knowledge bases can be used in future development

effort as a knowledge repository to search for existing design solutions, component

descriptions, test cases, etc.

174

Risk management can be integrated into the APDL and risks will also be

decomposed as the FR/DP/SC/PV decomposition is performed. Risks are either mitigated

or allocated to some or all of the derived domain entities as the decomposition proceeds.

A new DP type called “Interface” can be introduced into the model to identify the

subsystems and components used as interfaces to integrate the subsystems or

components. The Design Matrix Analysis can be used to identify the interfaces between

the system components [Jeziorek, 2005].

There are some studies to use the AD structure for project management and

tasking [Steward and Tate, 2000; Braha, 2002]. Since APDL covers the whole product

development lifecycle, the domain entities that are developed by applying the APDL

model can be used for estimation, scheduling, and tasking.

The commonly used product and project management models, such as CMMI

[CMMI 1.1] and RUP, lack the systematic nature of the APDL and the APDL lacks a lot

of details such as templates, checklists, and documentation that are provided by the other

models. In a more comprehensive research, the commonly used models can be modified

to include the APDL model in order to provide a more robust and more systematic

approach to product development lifecycle and product knowledge management.

People are finally accepting the idea that they may be able to benefit from the

experiences of others. Corporations, government departments, and even the military are

actively using lessons learned information to help them achieve their varied goals. There

are few commercial software tools (e.g., AskMe Enterprise) and a lot of homegrown tools

(NASA, WEROX, and Roche) for capture and reuse of lessons learned.

The tools and databases used for capturing and utilizing Lessons Learned and

Best Practices can be integrated with the APDL SA to relate the lessons learned and best

practices to specific domain entities. When a specific domain entity is reused in a future

product development effort, the developer can be informed about the related lessons

learned and best practices. This will help developers avoid previous mistakes and reuse

the best practices. It will also make the lessons learned and best practices system more

effective and efficient.

175

REFERENCES

1) A Survey of System Development Process Models, Center for Technology in
Government University at Albany, SUNY, 1998.

2) Akao, Y., Ed. 1990, Quality Function Deployment: Integrating Customer Requirements
into Product Design, Translated by Glenn Mazur. Cambridge, MA: Productivity
Press.

3) Albano, L.D., and Suh, N.P. "Axiomatic Design and Concurrent Engineering", Computer
Aided Design, 1994v26, n7, p499-504.

4) Altshuller G.S., Creativity as an Exact Science, Gordon and Breach, New York, 1988.
ISBN 0-677-21230-5

5) American Society for Quality web site, http://www.asq.org/

6) Axiomatic Design Solutions, Inc. (ADSI) web site, http://www.axiomaticdesign.com/

7) Braha, D., Partitioning Tasks to Product Development Teams, Proceedings of ICAD
2002, 2nd International Conference on Axiomatic Design, Cambridge, MA, June
10&11, 2002.

8) Browning, T. R., Modeling and Analyzing Cost, Schedule, and Performance in Complex
System Product Development, PhD Thesis, MIT, Cambridge, 1998.

9) Browning, T. R., Applying the Design Structure Matrix to System Decomposition and
Integration Problems: A Review and New Directions, IEEE Transaction on
Engineering Management, Vol. 48, No. 3, August 2001.

10) Cicek, I. and Ertas, A., Vibration Considerations for the Installation of Portable
Computer Equipment on Military Aircraft, Integrated Design and Process
Technology, IDPT-2004, June 2004.

11) Chase, James P., Value Creation in the Product Development Process, Thesis in Master
of Science in Aeronautics and Astronautics at MIT, December 2001.

12) Chen, Ke-Zhang, Identifying the Relationship among Design Methods: Key to Successful
Applications of Developments of Design Methods, Journal of Engineering Design,
Vol. 10, No. 2, 1999.

13) Christel, Michael G. and Kang, Kyo C., Issues in Requirements Elicitation, Technical
Report, CMU/SEI-92-TR-012, ESC-TR-92-012, SEI, Carnegie Mellon University,
September 1992.

14) CMMI 1.1, Capability Maturity Model Integration, Version 1.1 for Systems Engineering,
Software Engineering, Integrated Product and Process Development, and Supplier
Sourcing, Carnegie Mellon University, Software Engineering Institute, Pittsburgh,
PA, March 2002.

176

15) Condit, Philip M., Performance, Process, and Value: Commercial Aircraft Design in the
21st Century, Speech at the World Aviation Congress and Exposition. Los Angeles.
October 22, 1996.

16) Coyne, R. D., Rosenman, M. A., Radford, A. D., Balachandran, M., and Gero, J. S.,
Knowledge-Based Design Systems, Addison-Wesley Publishing Company, 1990.

17) Davis, A.L. and Leffingwell, D.A., Making Requirements Management Work for You,
Crosstallk, The Journal of Defense Software Engineering, April 1999, pp 10-13.

18) Dixon J.R., On Research Methodology Towards a Scientific Theory of Engineering
Design, Artificial Intelligence for Engineering Design, Analysis, and Manufacturing,
Vol. 1, No. 3, p 145-157, 1987.

19) Do, S.-H. and Suh, N. P., Object Oriented Software Design with Axiomatic Design,
Proceedings of ICAD2000, Cambridge, MA, June 21-23, 2000, pgs. 278-284.

20) Do, S.-H., Software Product Lifecycle Management Using Axiomatic Design Approach,
Proceedings of ICAD2004, Seoul, June 21-24, 2004.

21) DoD, 91, U.S. Department of Defense. Software Technology Plan: Volume II Plan of
Action (Technical Report Draft 5, 8/15/91), U.S. Department of Defense, August
1991.

22) Eppinger, Steven D., Three Views of Product Complexity, Presented at the LAI Plenary.
Cambridge. April 2001.

23) Ertas, Atila and Jones, Jesse C., The Engineering Design Process, 2nd Edition, John
Wiley & Sons, Inc., 1996.

24) Ettlie, J. E., Product-process Development Integration in Manufacturing, Management
Science, 41, 7, 1995, 1224-1237.

25) Evbuomwan, N.F.O., Sivaloganathan, S., and Jebb A., A Survey of Design Philosophies,
Models, Methods and Systems, Proceedings ImechE Part B: Journal of Engineering
Manufacture, Vol. 210, No. B4, pp. 301-320, 1996.

26) Finger S, Dixon J.R., A Review of Research in Mechanical Engineering Design. Part I
and Part II, Research in Engineering Design, Vol. 1, pp. 51-67 and pp. 121-137,
1989.

27) Finin, T., McKay, D., and Fritzon, R., An Overview of KQML: A Knowledge Query and
Manipulation Language, Technical Report, Computer Science Department,
University of Maryland, 1992.

28) Fredriksson B., Holistic Systems Engineering In Product Development, The Saab-Scania
Griffin, 1994/95, Saab-Scania AB, Linköping, Sweden, Nov 1994.

29) Friedman, G., Hintersteiner, D., Tate, D., and Zimmerman, R., Representation and
Refinement of Constraints in the System Architecture, 5th International Conference on
Integrated Design and Process Technology (IDPT), Society for Design and Process
Science (SDPS), Dallas, TX, June 4-8, 2000.

177

30) Genesereth, M.R. and Fikes, R., Knowledge interchange format, Version 2.2 reference
manual. Computer Science Dept., Stanford Univ., Stanford, CA. Technical Report
Logic -90-04

31) Gotel, O., and Finkelstein, A., An Analysis of the Requirements Traceability Problem,
Proceedings of the First International Conference on Requirements Engineering,
Colorado Springs, Colo., April 1994, pp. 94-101.

32) Gumus, B., Ertas, E., Unuvar, B, and Doganli, M., Requirements Traceability (RT)
Throughout the System Development Lifecycle Using Axiomatic Design (AD)
Approach, Proceedings of Integrated Design and Process Technology, IDPT,
Pasadena, California, June 2002.

33) Gumus, Bulent and Ertas, Atila, (2004a), Requirement Management and Axiomatic
Design, Proceedings of Integrated Design and Process Technology Symposium,
Izmir, Turkey, June, 2004, Vol. 1, pp. 52-62.

34) Gumus, Bulent and Ertas, Atila, (2004b), Requirement Management and Axiomatic
Design, Journal of Integrated Design and Process Science, Vol. 8 Number 4, pp. 19-
31, 2004.

35) Harutunian, V., Nordlund, M., Tate, D., and Suh, N. P., Decision Making and Software
Tools for Product Development Based on Axiomatic Design Theory, Annals of the
CIRP, Vol. 45/1, 1996.

36) Hauser, J.R. and Clausing, D., The House of Quality, Harvard Business Review, May-
June, pp 63-73.

37) Hintersteiner, Jason D. and Tate, Derrick, Command and Control in Axiomatic Design
Theory: It’s Role and Placement in the System Architecture, Proceedings of the 2nd
International Conference on Engineering Design and Automation, Maui, HI. August
9-12, 1998.

38) Hintersteiner, J. D., A Fractal Representation for Systems, Proceedings of the 1999
International CIRP Design Seminar, Enschede, the Netherlands, March 24-26, 1999.

39) Hintersteiner, Jason D., Addressing Changing Customer Needs by Adapting Design
Requirements, Proceeding of ICAD2000, First International Conference on
Axiomatic Design, Cambridge, MA – June 21-23, 2000.

40) Hu, M., Yang, K., and Taguchi, S. (2000a), Enhancing Robust Design with the Aid of
TRIZ and Axiomatic Design, Part I, TRIZ Journal, October 2000.

41) Hu, M., Yang, K., and Taguchi, S. (2000b), Enhancing Robust Design with the Aid of
TRIZ and Axiomatic Design, Part II, TRIZ Journal, November 2000.

42) IEEE Std. 830-1998, Institute of Electrical and Electronics Engineers (IEEE)
Recommended Practices for Software Requirements Specifications, IEEE Standard
830-1990, Institute of Electrical and Electronics Engineers, New York, 1983.

178

43) IEEE Std. 610.12-1990, Institute of Electrical and Electronics Engineers (IEEE) Standard
Glossary of Software Engineering Terminology. IEEE Standard 610.12-1990,
Institute of Electrical and Electronics Engineers, New York, 1983.

44) INCOSE, International Council on Systems Engineering (INCOSE), Systems
Engineering Handbook, INCOSE, San Francisco, 1998.

45) Jeziorek, Peter N., Cost Estimation of Functional and Physical Changes Made to
Complex Systems, MS Thesis, Department of Mechanical Engineering, MIT,
Cambridge, 2005.

46) Jones, J. C., A Method of Systematic Design, In Conference on Design Methods, J. C.
Jones and D.G. Thornley, (eds.), New York: Macmillan, 1962.

47) Jung, J.Y. and Billatos, S.B., Applicability of Axiomatic Design in Concurrent
Engineering, ASME Design Engineering, v52 pp129-135, 1993.

48) Kletz, T. A., Hazop and Hazan: Identifying and Assessing Process Industry Hazards, 4th
Edition, Rugby, Warwickshire, UK, Institution of Chemical Engineers, 1999.

49) Kuo, T.-C., Huang, S. H., and Zhang, H.-C., Design for Manufacture and Design for ‘X’:
Concepts, Applications, and Perspectives, Computers and Industrial Engineering,
Vol. 41, pp. 241-260, 2001

50) Lee, Tae-Sik, The System Architecture Concept in Axiomatic Design Theory: Hypotheses
Generation & Case-study Validation, M.S. Thesis, Department of Mechanical
Engineering, MIT, Cambridge, 1999.

51) Leveson, N. G., Safeware: System Safety and Computers, Addison-Wesley Publishing
Co. Reading, MA. 1995. ISBN #020-111972-2.

52) Lipson, H. and Suh, N. P., Towards a Universal Knowledge Database for Design
Automation, Proceeding of ICAD2000, First International Conference on Axiomatic
Design, pg., 250258, Cambridge, MA, June 21-23, 2000

53) Mann, D., Axiomatic Design and TRIZ: Compatibilities and Contradictions, Proceedings
of ICAD2002, 2nd International Conference on Axiomatic Design, Cambridge, MA,
June 10-11, 2002

54) Mäntylä, M., Knowledge Intensive CAD: Introduction and a Research Agenda, in
Knowledge Intensive CAD Volume 1, Pages 3-12, Chapman & Hall, London, 1996.

55) McManus, Hugh and Warmkessel, Joyce, Lean Product Development, Presentation to the
Lean Aerospace Initiative Executive Board, May 23, 2002.

56) Melvin, Jason W., Axiomatic System Design: Chemical Mechanical Polishing Machine
Case Study, PhD Thesis in Mechanical Engineering at MIT, February 2003.

57) MIL-STD-498, Military Standard for Software Development and Documentation,
Department of Defense, USA, 5 December 1994

179

58) Mohsen, A. H. and Cekecek, E., Thoughts on the use of Axiomatic Designs within the
Product Development Process, Proceeding of ICAD2000, First International
Conference on Axiomatic Design, Pg. 188-195, 2000.

59) NASA Systems Engineering Handbook. Pasadena: Jet Propulsion Laboratory, 1995.

60) Nordlund, M., An Information Framework for Engineering Design based on Axiomatic
Design, Ph.D. Thesis, Dept. of Manufacturing Systems, Royal Institute of
Technology (KTH), Stockholm, Sweden, 1996

61) Oosterman, Bas, Improving Product Development Projects by Matching Product
Architecture and Organization, University of Groningen, The Netherlands. 2001.

62) Palady, P., Failure Modes and Effects Analysis, PT Publications, 1995.

63) Park S., Robust Design and Analysis for Quality Engineering. Chapman & Hall, London,
1996.

64) Prasad, B., Concurrent Engineering Fundamentals – Volume 1, Prentice Hall, Upper
Saddle River, New Jersey, 1996.

65) Project Management Institute web site http://www.pmi.org/

66) QFD Institute http://www.qfdi.org/

67) Ramesh, B., Powers, T., Stubbs, C., and Edwards, M., Implementing Requirements
Traceability: A Case Study, Proceedings of the Second IEEE International
Symposium on Requirements Engineering, York, England, March 1995.

68) Ramesh, B. and Jarke, M., Toward Reference Models for Requirements Traceability,
IEEE Transactions on Software Engineering, Vol. 37, No 1. January 2001, pp 58-93.

69) RTCA/DO-160D, Environmental Conditions and Test Procedures for Airborne
Equipment, July 29, 1997,

70) Rzepka, William E., A Requirements Engineering Testbed: Concept, Status, and First
Results. In Bruce D. Shriver (editor), Proceedings of the Twenty-Second Annual
Hawaii International Conference on System Sciences, IEEE Computer Society, pp.
339-347, 1989.

71) Smith, L. Six Sigma and the Evolution of Quality in Product Development, SixSigma
Forum Magazine, 2001,
http://www.qualityprogress.asq.org/pub/sixsigma/past/vol1_issue1/ssfmv1i1smith.pdf

72) Söderman, M., Tools for Creating Understanding and an Integrated Dialogue in the
Early Stages of Product Design, Proceedings of the 2nd International Conference on
Engineering Design and Automation, Maui, HI. August 9 – 12, 1998.

73) Stagney, David B., The Integrated Concurrent Enterprise, MS Thesis in Aeronautics and
Astronautics and in Management, MIT, September 2003

74) Steward, Donald V. The Design Structure System: A Method for Managing the Design of
Complex Systems, IEEE Transactions on Engineering Management 28.3: 71-74, 1981.

180

75) Steward, D. and Tate, D., Integration of Axiomatic Design and Project Planning,
Proceedings of ICAD2000, First International Conference on Axiomatic Design, MA-
June 21-23, 2000.

76) Suh, Nam Pyo, The Principles of Design, Oxford University Press, Inc., 1990.

77) Suh, Nam Pyo, Axiomatic Design: Advances and Applications, Oxford University Press,
Inc., 2001.

78) Sullivan, L.P., Quality Function Deployment, Quality Progress, June 1986, pp 39-50.

79) Sun, J., Han, B., Ekwaro-Osire, S., and Zhang, H.-C., Design-for-Environment:
Methodologies, Tools, and Implementation, Integrated Design and Process
Technology, 2003, Austin, Texas, pp. 375-386.

80) Taguchi, G., Introduction to Quality Engineering. Nordica International Limited, Hong
Kong, 1986.

81) Tate, Derrick, 1999, A Roadmap for Decomposition: Activities, Theories, and Tools for
System Design, Ph.D. Dissertation, Mechanical Engineering Department, MIT,
Cambridge, MA. February, 1999.

82) Tate, D. and Nordlund, M., Synergies between American and European Approaches to
Design, Proceeding of the 1st World Conference on Integrated Design and Process
Technology (IDPT), Austin, TX, pp. 103-111, Dec. 7-9, 1995.

83) Tate, D. and Nordlund, M., A Design Process Roadmap as a General Tool for
Structuring and Supporting Design Activities, Proceeding of the 2nd World
Conference on Integrated Design and Process Technology (IDPT-Vol. 3), Society for
Design and Process Science, Austin, TX, pp. 97-104, Dec. 1-4, 1996.

84) Trewn, J. and Yang, K., A Treatise on System Reliability and Design Complexity,
Proceedings of ICAD2000, First International Conference on Axiomatic Design,
Cambridge, MA, 2000, pp. 162-168.

85) Ulrich, Karl T. and Eppinger Steven D., Product Design and Development, Second
Edition, 2000, McGraw-Hill, Inc.

86) Ulrich, K., The role of product architecture in the manufacturing firm, Research Policy,
Vol. 24, pp. 265-293, 1993

87) Ullman, David G., The Mechanical Design Process, 1992, McGraw-Hill, Inc.

88) VDI, 1987, Design Handbook 2221: Systematic Approach to the Design of Technical
Systems and Products (translation of German edition), Verein Deutscher Ingenieure
Verlag, Dusseldorf.

89) Voland, Gerard, Engineering by Design, Second Edition, 2004, Pearson Prentice Hall.

90) Walker, J. M. and Boothroyd, G., Product Development, in J. M. Walker (Ed.),
Handbook of Manufacturing Engineering, New York, Marcel Decker, 1996.

181

91) Wall, S. D., Smith, D. B., and Koenig, L. J., Team Structures and Processes in the
Design of Space Missions, Proceedings of the IEEE Aerospace Conference, 1999.
Volume: 2, 6-13 March 1999, Page(s): 35 -42.

92) Wanyama, W., Ertas, A., Zhang, H.-C., and Ekwaro-Osire, S., Life-cycle engineering:
issues, tools and research, International Journal of Computer Integrated
Manufacturing, Volume 16, Numbers 4-5 / July-September 2003.

93) Yoshioka, Masaharu, Knowledge Intensive Engineering Framework Manual, Tomiyama
Lab, National Center for Science Information Systems, The University of Tokyo,
January 12, 2000.

182

APPENDIX A

NEW THEOREMS

T1: Create system FR/DP/SC triplet: Some of the CNs may not be stated in terms of

highest level needs and, thus, they correspond to lower level FRs or DPs. Therefore, once

the CNs are mapped to FRis and ICs, the main objective of the system, system FR,

should be developed, the top level design concept, system DP, and the physical system,

system (SC1), should be proposed. The design decomposition and zigzagging should

start from the system FR/DP/SC triplet.

T2: Initial FRs: Since the initial FRis can be at different levels of detail, they should be

mapped to the FR/DP hierarchy during the decomposition process where appropriate.

T3: Verifiable and Attainable FRs: Requirements should be verifiable and attainable

by themselves or should be decomposed into verifiable and attainable requirements.

T4: Multi FR – single SC: If multiple FRs are allocated to a single SC, it has to be

ensured that the FRs are not conflicting in time and space and the FR can satisfy them.

T5: FR-IC distinction: requirements are the desired functions that the product is

expected to provide whereas the constraints are the restrictions that the product must

comply while providing the desired functions

T6: Performance IC: To incorporate the performance constraints, a sub FR should be

created for the DPs that this IC is allocated to.

T7: Allocate ICs to system DP: The ICs that are derived from the CNs are first allocated

to the system DP, and then during the decomposition, the ICs are decomposed, if

necessary, and allocated to the lower level DPs.

183

APPENDIX B

CASE STUDY – SYSTEM ARCHITECTURE

F
R

1

F
R

1.
1

F
R

1.
2

F
R

1.
3

F
R

1.
4

F
R

1.
5

F
R

1.
5.

1
F

R
1.

5.
2

F
R

1.
5.

3
F

R
1.

5.
4

F
R

1.
5.

5

F
R

1.
5.

1.
1

F
R

1.
5.

1.
2

F
R

1.
5.

1.
2.

1
F

R
1.

5.
1.

2.
2

F
R

1.
5.

1.
2.

3

D
P

1

D
P

1.
1

D
P

1.
2

D
P

1.
3

D
P

1.
4

D
P

1.
5

D
P

1.
5.

1
D

P
1.

5.
2

D
P

1.
5.

3
D

P
1.

5.
4

D
P

1.
5.

5

D
P

1.
5.

1.
1

D
P

1.
5.

1.
2

D
P

1.
5.

1.
2.

1
D

P
1.

5.
1.

2.
2

D
P

1.
5.

1.
2.

3

S
C

1

S
C

1.
1

S
C

1.
2

S
C

1.
3

S
C

1.
4

S
C

1.
5

S
C

1.
4.

1
S

C
1.

4.
2

S
C

1.
4.

3
S

C
1.

4.
4

S
C

1.
4.

5

S
C

1.
4.

1.
1

S
C

1.
4.

1.
2

S
C

1.
4.

1.
2.

1

S
C

1.
6

S
C

1.
4.

1.
2.

2
S

C
1.

4.
1.

2.
3

S
C

1.
4.

1.
2.

4
S

C
1.

4.
1.

2.
5

S
C

1.
4.

1.
2.

6
S

C
1.

4.
1.

2.
7

S
C

1.
4.

1.
2.

8
S

C
1.

4.
1.

2.
9

S
C

1.
4.

1.
2.

1.
1

S
C

1.
4.

1.
2.

1.
2

S
C

1.
4.

1.
2.

1.
3

S
C

1.
4.

1.
2.

1.
4

S
C

1.
4.

1.
2.

4.
1

S
C

1.
4.

1.
2.

4.
2

S
C

1.
4.

1.
2.

4.
3

S
C

1.
4.

1.
2.

7.
1

S
C

1.
4.

1.
2.

7.
2

184

APPENDIX C

CASE STUDY – SC HIERARCHY

1.4.1.2.8.1 F3

1. System

1.1 Laptop 1.3 CC 1.2 Printer 1.4 Mounts
and Fixtures

1.5 UPS 1.6 Voltage
Converter

1.4.1 Laptop
Mount

1.4.2 Printer
Fixtures

1.4.3 CC
Fixtures

1.4.4 UPS
Fixtures

1.4.5 Voltage
Converter Fixtures

1.4.1.1 Laptop
Base Mount

1.4.1.2 Laptop
Screen Locking
Mechanism

1.4.1.2.1 Rod 1.4.1.2.2 Screen
attachment plate

1.4.1.2.3 Screw for
rod-screen plate

1.4.1.2.4 Link

1.4.1.2.5 Base
attachment plate

1.4.1.2.6 Screw for
link-base plate

1.4.1.2.7 Sliding
connector

System

Su
bs

ys
te

m
s

C
om

po
ne

nt
s

A
ttr

ib
ut

es

1.4.1.2.8
Tightening Screw

1.4.1.2.9 Screws to
attach the plates

1.4.1.2.1.1 L1

1.4.1.2.1.2 L2

1.4.1.2.1.3 SF2

1.4.1.2.1.4 F1

1.4.1.2.4.1 L3

1.4.1.2.4.2 L4

1.4.1.2.4.3 F2

1.4.1.2.7.1 A1

1.4.1.2.7.2 SF1

