
Last updated: 4/28/99 -- 1:35 PM DRAFT

Hintersteiner, J. D. and Nain, A. (1999). “Integrating Software into Systems: An Axiomatic Design Approach.” Proceedings of the 3rd

International Conference on Engineering Design and Automation, Vancouver, B. C. Canada. August 1-4, 1999. Page 1 of 7

INTEGRATING SOFTWARE INTO SYSTEMS: AN AXIOMATIC DESIGN
APPROACH

Jason D. Hintersteiner1 and Amrinder S. Nain2

Massachusetts Institute of Technology1

77 Massachusetts Avenue, Rm. 31-261, Cambridge MA 02139
jdhinter@alum.mit.edu

SVG Lithography Systems, Inc.2
901 Ethan Allen Highway, Ridgefield, CT 06877

nain@svg.com

ABSTRACT

Today’s increasingly complex electromechanical systems require extensive use of software control to achieve
necessary functionality. However, software design efforts for complex systems tend to be made only after most, if
not all, of the hardware has been defined. As a result, the software often bears the burden of achieving the system’s
desired functionality. While software is more flexible than hardware, the software design can often be greatly
simplified with minor changes to the hardware design, if the software and hardware designs are done concurrently.
Such unnecessary software complexity can have detrimental effects on the system in terms of safety and reliability
under unusual operating conditions, as well as complicating upgrades and product redesigns.

This paper proposes a methodology, based upon Axiomatic Design, for facilitating the design of software control
systems in conjunction with their corresponding hardware systems. In the Axiomatic Design framework, a system is
defined in a hierarchical structure known as a system architecture, where the specifications for the command and
control logic, which is typically implemented in software, appear at each level of the design hierarchy. Thus, the
design of the system software is distributed throughout the design of the system hardware.

To apply this technique, programming terms are defined and their roles are explored in the Axiomatic Design
framework. Next, a template is developed that represents system software and serves to highlight the functionality
required to control and coordinate the various activities of the system hardware. A case-study example of a robot
calibration routine is examined to illustrate these methods.

KEYWORDS

Axiomatic Design, System Architecture, Command and Control, Systems Engineering, Software Design

1. Introduction

While it is well accepted that electromechanical “systems” consist of both hardware and software, hardware
engineering and software engineering are all too frequently treated as separate disciplines. It is therefore not
uncommon to treat these tasks separately, with independent groups of designers, in product development. Since the
design of the control logic for the hardware depends on what hardware must be controlled, software is typically
developed after the hardware is mostly, if not completely, defined. Unfortunately, this often leads to very short
development times for software, as well as the last-minute addition of functionality to the software because of
hardware limitations or the perception that it will be “easier” to implement certain tasks in software. While software
is more flexible than dedicated hardware, this philosophy often leads to undue software complexity.

Last updated: 4/28/99 -- 1:35 PM DRAFT

Hintersteiner, J. D. and Nain, A. (1999). “Integrating Software into Systems: An Axiomatic Design Approach.” Proceedings of the 3rd

International Conference on Engineering Design and Automation, Vancouver, B. C. Canada. August 1-4, 1999. Page 2 of 7

A computer’s behavior can be easily changed by changing its software. In principle, this feature is
good— major changes can be made quickly and at seemingly low cost. In reality, the apparent low
cost is deceptive… and the ease of change encourages major and frequent change, which often
increases complexity rapidly and introduces errors. [4 (pg. 34)]

As a result, the software can behave unpredictably, since it is impossible to test software under all possible operating
conditions.

Software may fail even after several years of satisfactory use and after thousands or even millions
of copies have been installed… The failures are due to the fact that the number of possible
execution paths is astronomically high even in software systems of moderate size; therefore only
an extremely small percentage of all possible execution paths will ever be executed during testing
and even during the whole lifetime of the system. [1 (pg. 93)]

Recent efforts have been made to perform more of the hardware and software design in parallel, in order to reduce
overall development time. This cannot be done effectively, however, unless the intended functional requirements of
hardware and software are well understood, and their interrelationships can be qualified. Accordingly, tools are
needed to document the interrelationships between the hardware and software in a system. In Axiomatic Design, the
software in electromechanical systems is represented by means of a command and control algorithm (CCA) at every
level of the design hierarchy. At each level, the CCA captures the logic of the interactions among the hardware
elements at that level, along with all of the communication protocols necessary to interact with its immediate parent
and children CCAs. Thus, a software hierarchy emerges which mirrors the hardware hierarchy, and the software
design is embedded within the hardware design [3]. Hence, the argument can be made that software and hardware
design not only should be done concurrently, but that they must be done concurrently in order to provide a good
system design.

Up until now, the CCA has been defined only as an abstract concept. This paper explicitly shows how the CCA is
decomposed in the Axiomatic Design framework, based on the system architecture template. This includes an
overview of Axiomatic Design, an overview of the traditional software design process, a definition of terms, and a
case-study example of a robot calibration routine.

2. Background: Axiomatic Design Applied to Systems Engineering

Design is defined as the development and selection of a means (design parameters, or DPs) to satisfy objectives
(functional requirements, or FRs), subject to constraints. Axiomatic Design provides a framework for describing
design objects which is consistent for all types of design problems and at all levels of detail. Thus, different
designers can quickly understand the relationships between the intended functions of an object and the means by
which they are achieved. Additionally, the design axioms provide a rational means for evaluating the quality of
proposed designs, and guides designers to consider alternatives at all levels of detail by making choices between
these alternatives more explicit. The main concepts of Axiomatic Design include the following: (1) domains, which
separate the functional and physical parts of the design; (2) hierarchies, which categorize the progress of a design in
the functional and physical domains from a systemic level to more detailed levels; (3) zigzagging, which indicates
that decisions made at one level of the hierarchy affect the problem statement at lower levels; and (4) design axioms,
which dictate that the independence of the functional requirements must be maintained and that the information
content (i.e. cost, complexity, etc.) must be minimized, in order to generate a design of good quality. Suh [5, 6] and
Tate [7] provide more thorough explanations and detailed case-study examples of Axiomatic Design theory.

For large systems, a system architecture is developed which breaks down the design into individual systems and
subsystems at each level of the design hierarchy. In this representation, a system is modeled as a series of interacting
inputs and outputs, and its functions are broken down into three categories: process functions (i.e., functions that
perform value-added activities), command and control logic, and support and integration functions (e.g., pneumatics,
mechanical structure, etc.). A system template has been developed to maintain a consistent representation at all
levels of the hierarchy [2]. This paper extends the representation by showing explicitly how the system template is
applied to represent the software control logic in electromechanical systems.

Last updated: 4/28/99 -- 1:35 PM DRAFT

Hintersteiner, J. D. and Nain, A. (1999). “Integrating Software into Systems: An Axiomatic Design Approach.” Proceedings of the 3rd

International Conference on Engineering Design and Automation, Vancouver, B. C. Canada. August 1-4, 1999. Page 3 of 7

3. The Software Design Process

Software can be defined as a set of instructions for changing the state of a computer, which, when implemented in a
suitable environment, becomes an important part of a system. The overall process of designing software is very
similar to the process followed in other forms of engineering, namely: (1) study of feasibility and problem analysis,
(2) problem definition, (3) synthesis of design ideas, (4) analysis of the design, and (5) implementation. [1]
Software design, however, is very different from hardware design in that there is no “physical” implementation of
software. Accordingly, software is based on rules of logic, and not necessarily rules of physics. Software is based
on mathematical and combinatorial logic, as opposed to analysis. There is also no “wear and tear” on software. [1]
Several tools and techniques, such as object-oriented programming, have been developed for software design, and
several programming languages have been developed and customized for particular applications.

The overwhelming majority of errors in software design emerge from errors in the software specification, meaning
that the software addresses the specified requirements, but the requirements themselves are not what the customer
had intended. These errors, naturally, are very difficult to detect, and often remain undetected until an incident or
accident occurs. By comparison, implementation errors (i.e., errors in the code itself) are fairly easy to find, since
compiler and software debugger tools exist to detect and fix such problems during development.

There are two common types of specification errors. The first are errors of omission, where key physical constraints
are not satisfied because the software designers have little, if any, training in the hardware design, and therefore do
not consider physical constraints which may be more obvious to a hardware engineer. [1, 4] The second, and far
more onerous, are errors of added functionality. Because of the lack of physicality, there is a common
misconception that, compared to changes to a hardware design, changes to a software design are easy to make.
While software is very flexible because it is very simple to modify particular lines of code, understanding which
lines should be changed and ascertaining the implications of those changes on other parts of the system is just as
difficult as analogous changes in hardware. [1, 4] Unfortunately, functionality is often added to the software
design to compensate for inherent problems in the hardware design. This functionality tends to emerge very late in
the process, and has to be “slipped in” to the existing software design. Hence, even a software design which starts
off “clean” will not necessarily remain that way.

Flexibility also encourages the redefinition of tasks late in the development process in order to
overcome deficiencies found in other parts of the system. During development of the C-17
[aircraft], for example— a project that has run into great difficulties largely because of software
problems— the software was changed to cope with structural design errors in the aircraft wings
that were discovered during wind tunnel tests. This case is typical. [4 (pg. 34)]

In order to improve the design of systems, a framework must be established to link hardware and software design.
This framework must not only capture the complete functionality required by the software early in the design
process, but also highlight the implications of making design changes to one part of the design to compensate for
design deficiencies in other parts. The next section shows such a framework.

4. Application of the System Template to Software Systems

The software programs used to control systems satisfy key value-added tasks that are necessary for the entire system
to run effectively. However, the software programs alone are not sufficient to provide control – the order in which
the tasks are performed, the need to interface with a user (i.e. an operator, maintenance engineer, or an autonomous
external computer), and the need to handle and recover from errors are also important tasks which direct and support
the overall task to provide control functionality. Thus, it is important for the design of a CCA to capture all of these
elements. Accordingly, it is convenient to consider each CCA as a system in its own right, and the system template
should, and indeed does, apply to the representation of these software systems. In order to see this clearly and
provide a meaningful basis for discussion with software engineers, an analogy is drawn between the terms
commonly used in software and the system template.

• Programs: A program is a block of code which performs a desired value-added function or task. It may be a
stand-alone executable or a subroutine embedded within a larger program. At the top level, tasks typically
include providing for normal operation, initialization, and shutdown / servicing. At lower levels, tasks

Last updated: 4/28/99 -- 1:35 PM DRAFT

Hintersteiner, J. D. and Nain, A. (1999). “Integrating Software into Systems: An Axiomatic Design Approach.” Proceedings of the 3rd

International Conference on Engineering Design and Automation, Vancouver, B. C. Canada. August 1-4, 1999. Page 4 of 7

generally involve processing certain inputs to generate appropriate outputs. Thus, a program is analogous to a
process subsystem (DP).

• Interfaces: The FR to provide an interface with the external environment (i.e., human operator, factory
computer, or higher and lower levels of software control) emerges at each level of the software system
hierarchy, after the key programs have been defined. This dependency results from the fact that the programs
(DPs) define what kind of information will be available to and needed from the environment in order for the
programs to run properly. (In some cases, constraints may be placed on the FRs for the programs, dictating the
type of information that should be available to and from the user.) An interface at a particular level of the
design hierarchy is composed of building blocks, which define all of the types of interfaces available between
the system and the environment, as well as specific interfaces to correspond with each program at this level.
Thus, the interfaces are analogous to transport subsystems, as they are responsible for transporting information.

• Control Logic Diagrams: This diagram (typically a state diagram or a functional block diagram) is used to
show how the different programs in a software system interact with one another, both in terms of the
information exchanged through variables as well as the order of execution, indicating if any tasks are running in
parallel (i.e., multitasking). This is analogous to the CCA in the system template, since it defines how the
various programs are controlled and coordinated. An individual diagram does not need to be decomposed
further, though diagrams from multiple levels in the system architecture can be used to show a range of global
to local views of the software logic.

• Support Programs: In order to support the value-added programs, interfaces, and control logic, certain
supporting tasks must be performed. These tasks include garbage data collection, memory allocation, variable
and timer initialization, log files, and so forth. In addition, the support functionality incorporates the need for
libraries and error handling and recovery.

A library is defined here as a block of code which has general functionality, and is typically accessed by
multiple programs to perform a particular support task. An example of a library is a function contained in a
header file to generate the square root of a number. As long as the function is accomplished to the desired
accuracy, the particular algorithm implemented to generate the result is unimportant to the overall software
design. (For example, in the case of square root, multiple algorithms exist which can produce results accurate
to varying numbers of significant digits.) Each library is captured within the support program at the highest
level of the system architecture hierarchy which utilizes it.

The requirement to handle and recover from errors, both errors that can and cannot be predicted, is a complex
issue in software system design. Errors that can be predicted are defined by the known constraints and
limitations placed on the software design, and specific error handling and recovery logic can be developed.
Unpredictable errors, however, tend to emerge from unusual and/or unintended operating conditions, as well as
from mistakes in the control logic itself. For unpredictable errors, error handling and recovery is usually limited
to an attempt to bring the system into a safe state. Furthermore, error handling software is itself prone to errors,
and has a tendency to overcomplicate the software design and thus increase the information content. [4] The
error handling captured within the support programs is generally concerned with predictable errors in the
interactions between the programs, as defined by the control logic diagram. However, some error handling can
also be built into the control logic itself, so there is not necessarily a clear one-to-one mapping of how error
handling functions fit into the hierarchy. This is an area of continuing research.

Table 1: Comparison of the system architecture template for representing hardware and software.

Functional Requirements (FRs) Design Parameters (DPs)

Hardware Domain Software Domain Hardware Domain Software Domain

1 Perform physical process #1 Perform control task #1 Process subsystem #1 Program #1

2 Perform physical process #2 Perform control task #2
(a) Process subsystem #2 (1st opt.)

(b) Process subsystem #2 (2nd opt)

(a) Program #2 (1st opt.)

(b) Program #2 (2nd opt.)

3 Perform physical process #3 Perform control task #3 Process subsystem #3 Program #3

4 Perform process #4
(Transport)

Perform control task #4
(Provide interface w/ user)

Process subsystem #4 (transport
subsystem) User interface

5 Schedule and coordinate all
local process functions

Schedule and coordinate
all local tasks

Command and control algorithm
(CCA) Control logic diagram

6 Integrate & support
functionality Integrate control tasks Support systems Support programs

Last updated: 4/28/99 -- 1:35 PM DRAFT

Hintersteiner, J. D. and Nain, A. (1999). “Integrating Software into Systems: An Axiomatic Design Approach.” Proceedings of the 3rd

International Conference on Engineering Design and Automation, Vancouver, B. C. Canada. August 1-4, 1999. Page 5 of 7

=

programsSupport
diagram logic Control

interfaceUser
#3 Program
#2 Program
#1 Program

functions Integrate
processes Control
interface Provide

#3 task Perform
#2 task Perform
#1 task Perform

XXXXXX
OXXXXX
OOX
OOOX
OOOOX
OOOOOX

O
X

O
X

O
X

O
X

O
X

O
X

(1)

The system template, showing the application to both hardware and software systems, is provided in Table 1. The
idealized design matrix to maintain a decoupled design is shown in Equation 1 for software systems. In this
equation, an “X/O” means that a relationship may or may not exist between different programs, though the design of
the software system still conforms to the system template.

5. Case Study Example: Robot Calibration Routine

The system template for hardware and software systems has been applied to the design of a photolithography tool
manufactured by SVG Lithography Systems, Inc. The system uses one 6 DOF robot to move wafers between
different wafer processing areas in a work cell, as well as moving the wafers into and out of the system. A second
robot is also used in a similar fashion for transporting reticles (i.e., wafer field masks). The example described
below outlines the design of the robot calibration routine for these robots. This routine is responsible for initializing
and calibrating the robot with respect to the discrete locations in each work cell.

Constraints imposed on the design of the robot calibration routine include the use of a standard robot accessory (a
teaching pendant with display, known as the MCP control pad) for the user interface, speed and trajectory
limitations, restrictions on robot motions at each discrete location in the work cell, and implied constraints for
minimizing the necessary time required to calibrate the locations. Efforts were made early on in the design process
to establish and reconcile the functional requirements dictated by various departments, including engineering,
assembly, field servicing, etc. For example, requirements from engineering emerged from the design of the work
cell itself, while field service requirements focused more on ease of use and maintaining a short learning curve.

The top-level decomposition is shown in Table 2. The programs are the blocks of code which perform the value-
added functions of selecting the locations (DP.1), moving the robot between locations (DP.2), calibrating the
locations (DP.3), and recording the locations (DP.4). The only interface defined here is the user interface (DP.5),
which displays information gathered by and given to the user during different phases of the calibration. The control
logic (DP.6) is shown in Figure 1. The support programs (DP.7) constitute the elements required to maintain the
continuity thread between the various programs and the control logic. These include global variables, continuous
error recovery logic, library functions, and so forth.

Table 2: Decomposition of the robot calibration routine (top level).

Functional Requirements (FRs) Design Parameters (DPs)

Name Description Description

Calibrate robot locations Robot calibration system

1 Select
locations Select location to calibrate Location selection list

2 Move robot Move robot between valid locations and reset position Robot motion algorithm

3 Calibrate Calibrate location Calibration algorithm

4 Record Record location Record algorithm

5 Interface Provide an interface to the user MCP control pad interface

6 Control Schedule and coordinate all local tasks MCP operational control logic diagram

7 Support Integrate and support tasks Support programs & error handling

Last updated: 4/28/99 -- 1:35 PM DRAFT

Hintersteiner, J. D. and Nain, A. (1999). “Integrating Software into Systems: An Axiomatic Design Approach.” Proceedings of the 3rd

International Conference on Engineering Design and Automation, Vancouver, B. C. Canada. August 1-4, 1999. Page 6 of 7

Select
location to
calibrate
(FR.1)

Move to
location
(FR.2)

Calibrate
location
(FR.3)

Record
calibrated
location
(FR.4)

User-provided
location

information

Show motion info
to user Interact with user

User provides
confirmation to

record or go back

Figure 1: Control logic diagram for the robot calibration system (DP.6).

The corresponding design matrix, shown in Equation 2, follows the system template and indicates that the robot
calibration routine is a decoupled design. The off-diagonal “X” terms indicate that, for example, the locations to be
calibrated must be established before the motion to the locations and the calibration and recording routines for those
locations are designed. This has ramifications not only for how the programs interact, but also for the user interface.
Similarities between the information exchanged with the user for each program give rise to the creation of basic
building blocks for developing the interface. While not shown here, the decomposition has been performed to the
low level design for this software, and the system representation for software holds at every hierarchical level.

=

programsSupport
diagram logic Control

interface MCP
algorithm Record

algorithmn Calibratio
algorithmmotion Robot

listselection Location

support and Integrate
processes Control

interfaceuser Provide
location Record

location Calibrate
robot Move
locationsSelect

XXXXXXX
OXXXXXX
OOXXXXX
OOOXXXX
OOOOXOX
OOOOOXX
OOOOOOX

(2)

6. Conclusions

This paper has demonstrated how command and control algorithms (CCAs), which capture the software control
logic in Axiomatic Design, are characterized in the system architecture. Specifically, CCAs are an important part of
electromechanical systems at every level of the hierarchy, and thus their design cannot be separated from the
hardware systems they control. Furthermore, it has been shown that CCAs are systems in and of themselves,
consisting of software programs, control diagrams, and support programs, and thus can be represented by the system
template. Terms from software engineering practice have been defined so that the analogy between software
systems and the system template is preserved. In addition, a case study example of a robot calibration routine has
been shown as a proof-of-concept that this technique is applicable to complex software control systems. Current
work in this area includes application of this technique to more complex case-study examples, refinement of error
handling and design constraint issues, and the integration of this technique into the system design review process.

ACKNOWLEDGEMENTS

The authors would like to acknowledge SVG Lithography Systems, Inc. for sponsoring this research, especially
Matthew Van Doren, Peter Filosi, and Richard Zimmerman for their comments and support. The authors would also
like to acknowledge the MIT Axiomatic Design Group and Axiomatic Design Software, Inc. for their input.

Last updated: 4/28/99 -- 1:35 PM DRAFT

Hintersteiner, J. D. and Nain, A. (1999). “Integrating Software into Systems: An Axiomatic Design Approach.” Proceedings of the 3rd

International Conference on Engineering Design and Automation, Vancouver, B. C. Canada. August 1-4, 1999. Page 7 of 7

REFERENCES

1. Goos, G. and Aβmann, U. (1998) “Systematic Software Construction.” Proceedings of the Universal
Design Theory Workshop, Karlsruhe, Germany. May, 1998.

2. Hintersteiner, J. D. (1999). “A Fractal Representation for Systems.” Proceedings of the 1999 International
CIRP Design Seminar, Enschede, the Netherlands, March 24-26, 1999.

3. Hintersteiner, J. D. and Tate, D. (1998). “Command and Control in Axiomatic Design Theory: Its Role
and Placement in the System Architecture.” Proceedings of the 2nd International Conference on
Engineering Design and Automation, Maui, Hawaii USA, August 9-12, 1998.

4. Leveson, N. G. (1995). Safeware: System Safety and Computers. Addison-Wesley Publishing Co., Inc.
Reading, MA. ISBN 020-111972-2

5. Suh, N. P. (1990). The Principles of Design, Oxford University Press, New York. ISBN 019-504345-6.

6. Suh, N. P. (1999). Axiomatic Design: Advances and Applications. To be published by Oxford University
Press, NY.

7. Tate, D. (1999). “A Roadmap for Decomposition: Activities, Theories, and Tools for System Design.”
Ph.D. Thesis, Dept. of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA.

